Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 3;19(1):575.
doi: 10.1186/s12879-019-4200-3.

Efficacy of pulsed-xenon ultraviolet light for disinfection of high-touch surfaces in an Ecuadorian hospital

Affiliations

Efficacy of pulsed-xenon ultraviolet light for disinfection of high-touch surfaces in an Ecuadorian hospital

José E Villacís et al. BMC Infect Dis. .

Abstract

Background: Hospital environment in patient care has been linked on healthcare-associated infections (HAI). No touch disinfection technologies that utilize pulsed xenon ultraviolet light has been recognized to prevent infection in contaminated environments. The purpose of this study was: 1) to evaluate the effectiveness of pulsed-xenon ultraviolet light (PX-UV) disinfection for the reduction of bacteria on environmental surfaces of Hospital General Enrique Garcés, and 2) to evaluate the in-vitro efficacy against multi-drug resistance microorganisms.

Methods: This was a quality-improvement study looking at cleaning and disinfection of patient areas. During the study, a total of 146 surfaces from 17 rooms were sampled in a secondary 329-bed public medical center. Microbiological samples of high-touch surfaces were taken after terminal manual cleaning and after pulsed xenon ultraviolet disinfection. Cleaning staff were blinded to the study purpose and told clean following their usual protocols. For positive cultures PCR identification for carbapenemase-resistance genes (blaKPC, blaIMP, blaVIM, and blaNDM) were analyzed and confirmed by sequencing. The total number of colony forming units (CFU) were obtained and statistical analyses were conducted using Wilcoxon Rank Sum tests to evaluate the difference in CFU between terminal manual cleaning and after pulsed xenon ultraviolet disinfection.

Results: After manual disinfection of 124 surfaces showed a total of 3569 CFU which dropped to 889 CFU in 80 surfaces after pulsed xenon disinfection (p < 0.001). Overall, the surface and environmental contamination was reduced by 75% after PX-UV compared to manual cleaning and disinfection. There were statistically significant decreases in CFU counts of high touch surfaces in OR 87% (p < 0.001) and patient rooms 76% (p < 0.001). Four rooms presented serine carbapenemases blaKPC, and metallo beta-lactamases blaNDM, blaVIM, blaIMP. confirmed by PCR and sequencing. The in-vitro testing with endemic strains found that after five minutes of pulsed xenon ultraviolet exposure an 8-log reduction was achieved in all cases.

Conclusion: This study is one of the first of its kind in an Ecuador Hospital. We found that pulsed-xenon ultraviolet disinfection technology is an efficacious complement to the established manual cleaning protocols and guidelines in the significant reduction of MDRO.

Keywords: Carbapenemase; Disinfection; Environmental surfaces; HAIs; UV-C light.

PubMed Disclaimer

Conflict of interest statement

M.S. and D.G.P. are employees of Xenex Disinfection Services.

JEV, ML, GV and RH are employees of 360Life Technologies.

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Average in CFU of High Touch Surfaces of patient rooms. On the horizontal axis are the surfaces sampled, and the vertical axis is expressed average of Colony counts units (CFU). °Other surfaces: external air duct, workbench, curtain, sink, door handle, soap dispenser, bath rail, bathroom sink, shower faucet, bathroom switch, bedside table, table
Fig. 2
Fig. 2
Total CFU on High Touch Surfaces of OR. On the horizontal axis are the surfaces sampled, and the vertical axis is expressed number of Colony counts units (CFU)

Similar articles

Cited by

References

    1. World Health Organization (WHO). Global burden of infections associated with health care. WHO; 2013. [cited 2018 Oct 6]; Available from: https://www.who.int/gpsc/country_work/burden_hcai/es/
    1. Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet. 2006;368(9538):874–885. doi: 10.1016/S0140-6736(06)68853-3. - DOI - PubMed
    1. Allegranzi B, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228–241. doi: 10.1016/S0140-6736(10)61458-4. - DOI - PubMed
    1. Escandón-Vargas K, Reyes S, Gutiérrez S, Villegas MV. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti-Infect Ther. 2017;15(3):277–297. doi: 10.1080/14787210.2017.1268918. - DOI - PubMed
    1. Dancer SJ. The role of environmental cleaning in the control of hospital-acquired infection. J Hosp Infect. 2009;73(4):378–385. doi: 10.1016/j.jhin.2009.03.030. - DOI - PubMed