Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 4;19(1):877.
doi: 10.1186/s12889-019-7195-1.

Bibliometric analysis of cardiometabolic disorders studies involving NO2, PM2.5 and noise exposure

Affiliations

Bibliometric analysis of cardiometabolic disorders studies involving NO2, PM2.5 and noise exposure

Yu-Kai Huang et al. BMC Public Health. .

Abstract

Background: This study uses bibliometric analysis to describe the state of research about the association of NO2, PM2.5 and noise exposures - three traffic-related pollutants - with cardiometabolic disorders.

Methods: We retrieved references published 1994-2017 from Scopus and classified references with respect to exposure, health outcome and study design using index keywords. Temporal trend, top cited references, used index keywords and the number of hypothesis testing and non-hypothesis testing study design for each group were identified.

Results: Results show PM2.5 is the most frequently studied exposure (47%), followed by both NO2 and PM2.5 exposure (29%). Only 3% of references considered multiple exposures between NO2 and/or PM2.5 and noise, and these were published after 2008. While we observed a growing trend in studies with NO2 and/or PM2.5 and noise and diabetes in the last decade, there is a diminishing trend in studies with noise and diabetes. Different patterns of study designs were found through H/NH ratio, the number of references classified as having a hypothesis (H)-testing design relative to the number of references classified as having a non-hypothesis (NH)-testing design. Studies with NO2 and/or PM2.5 exposure are more likely to have a H-testing design, while those with noise exposure are more likely to have a NH-testing design, such as cross-sectional study design.

Conclusions: We conclude with three themes about research trends. First, the study of simultaneous exposures to multiple pollutants is a current trend, and likely to continue. Second, the association between traffic-related pollutants and diabetes and metabolic symptoms is an area for growth in research. Third, the transition to the use of H-testing study designs to explore associations between noise and cardiometabolic outcomes may be supported by improved understanding of the mechanism of action, and/or improvements to the accuracy and precision of air pollution and noise exposure assessments for environmental health research.

Keywords: Bibliometric; Cardiometabolic disorders; Cardiovascular disease; Diabetes; Exposures; Fine particulate matter; Multiple; Nitrogen dioxide; Noise; PM2.5; Study design.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
The classification of retrieved references by exposure and health outcome
Fig. 2
Fig. 2
Retrieved references included different combinations of exposures. The numbers indicate the number of retrieved references
Fig. 3
Fig. 3
Trend in the number of references about each exposure classification and cardiometabolic disorders
Fig. 4
Fig. 4
Relative frequency of references studying different exposures by health outcome across three time periods. Relative frequencies (%) in this figure are calculated by the number of total reference involving particular kind of exposure and health outcome divided by the number of total reference involving particular kind of health outcome in that time periods
Fig. 5
Fig. 5
Word clouds for the signature index keywords for references involving (a) NO2, (b) PM2.5, (c) Noise, (d) NO2 + PM2.5, (e) NO2/PM2.5 + noise. Font size and color of a term is proportional to its relatively frequency and we use black, dark grey and light grey to indicate the relative frequency over 20, 10–20% and less than 10%, respectively

Similar articles

Cited by

References

    1. Beelen R, Hoek G, van den Brandt PA, Goldbohm RA, Fischer P, Schouten LJ, Jerrett M, Hughes E, Armstrong B, Brunekreef B. Long-term effects of traffic-related AIR pollution on mortality in a Dutch cohort (NLCS-AIR study) Environ Health Perspect. 2008;116(2):196–202. - PMC - PubMed
    1. Dockery DW, Pope CA, 3rd, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Jr, Speizer FE. An association between air pollution and mortality in six U.S. cities. N Engl J Med. 1993;329(24):1753–1759. - PubMed
    1. Pope CA, 3rd, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation. 2004;109(1):71–77. - PubMed
    1. Brook RD, Rajagopalan S, Pope CA, 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–2378. - PubMed
    1. Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith SC, Jr, et al. Air pollution and cardiovascular disease: a statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation. 2004;109(21):2655–2671. - PubMed

MeSH terms