Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties
- PMID: 31273247
- PMCID: PMC6609704
- DOI: 10.1038/s41598-019-46100-3
Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties
Abstract
Mutations in the rfa operon leading to severely truncated lipopolysaccharide (LPS) structures are associated with pleiotropic effects on bacterial cells, which in turn generates a complex phenotype termed deep-rough. Literature reports distinct behavior of these mutants in terms of susceptibility to bacteriophages and to several antibacterial substances. There is so far a critical lack of understanding of such peculiar structure-reactivity relationships mainly due to a paucity of thorough biophysical and biochemical characterizations of the surfaces of these mutants. In the current study, the biophysicochemical features of the envelopes of Escherichia coli deep-rough mutants are identified from the molecular to the single cell and population levels using a suite of complementary techniques, namely microelectrophoresis, Atomic Force Microscopy (AFM) and Isobaric Tag for Relative and Absolute Quantitation (iTRAQ) for quantitative proteomics. Electrokinetic, nanomechanical and proteomic analyses evidence enhanced mutant membrane destabilization/permeability, and differentiated abundances of outer membrane proteins involved in the susceptibility phenotypes of LPS-truncated mutants towards bacteriophages, antimicrobial peptides and hydrophobic antibiotics. In particular, inner-core LPS altered mutants exhibit the most pronounced heterogeneity in the spatial distribution of their Young modulus and stiffness, which is symptomatic of deep damages on cell envelope likely to mediate phage infection process and antibiotic action.
Conflict of interest statement
The authors declare no competing interests.
Figures









Similar articles
-
Assembly of lipopolysaccharide in Escherichia coli requires the essential LapB heat shock protein.J Biol Chem. 2014 May 23;289(21):14829-53. doi: 10.1074/jbc.M113.539494. Epub 2014 Apr 9. J Biol Chem. 2014. PMID: 24722986 Free PMC article.
-
Mutation and Suppressor Analysis of the Essential Lipopolysaccharide Transport Protein LptA Reveals Strategies To Overcome Severe Outer Membrane Permeability Defects in Escherichia coli.J Bacteriol. 2017 Dec 20;200(2):e00487-17. doi: 10.1128/JB.00487-17. Print 2018 Jan 15. J Bacteriol. 2017. PMID: 29109183 Free PMC article.
-
An Escherichia coli MG1655 lipopolysaccharide deep-rough core mutant grows and survives in mouse cecal mucus but fails to colonize the mouse large intestine.Infect Immun. 2003 Apr;71(4):2142-52. doi: 10.1128/IAI.71.4.2142-2152.2003. Infect Immun. 2003. PMID: 12654836 Free PMC article.
-
Cyclic Enterobacterial Common Antigen Maintains the Outer Membrane Permeability Barrier of Escherichia coli in a Manner Controlled by YhdP.mBio. 2018 Aug 7;9(4):e01321-18. doi: 10.1128/mBio.01321-18. mBio. 2018. PMID: 30087168 Free PMC article.
-
Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model.Nat Rev Microbiol. 2016 Jun;14(6):337-45. doi: 10.1038/nrmicro.2016.25. Epub 2016 Mar 30. Nat Rev Microbiol. 2016. PMID: 27026255 Free PMC article. Review.
Cited by
-
Coevolutionary phage training leads to greater bacterial suppression and delays the evolution of phage resistance.Proc Natl Acad Sci U S A. 2021 Jun 8;118(23):e2104592118. doi: 10.1073/pnas.2104592118. Proc Natl Acad Sci U S A. 2021. PMID: 34083444 Free PMC article.
-
Cooperation between physiological defenses and immune resistance produces asymptomatic carriage of a lethal bacterial pathogen.bioRxiv [Preprint]. 2023 Feb 26:2023.01.22.525099. doi: 10.1101/2023.01.22.525099. bioRxiv. 2023. Update in: Sci Adv. 2023 Jun 23;9(25):eadg8719. doi: 10.1126/sciadv.adg8719. PMID: 36711884 Free PMC article. Updated. Preprint.
-
Lipopolysaccharide structure modulates cationic biocide susceptibility and crystalline biofilm formation in Proteus mirabilis.Front Microbiol. 2023 Apr 5;14:1150625. doi: 10.3389/fmicb.2023.1150625. eCollection 2023. Front Microbiol. 2023. PMID: 37089543 Free PMC article.
-
Synthesis and Evaluation of 3‑Deoxy‑d-manno-oct-2-ulosonic Acid Derivatives to Perturb Escherichia coli Lipopolysaccharide Biosynthesis.JACS Au. 2025 May 22;5(6):2749-2761. doi: 10.1021/jacsau.5c00338. eCollection 2025 Jun 23. JACS Au. 2025. PMID: 40575284 Free PMC article.
-
Environmental complexity is more important than mutation in driving the evolution of latent novel traits in E. coli.Nat Commun. 2022 Oct 6;13(1):5904. doi: 10.1038/s41467-022-33634-w. Nat Commun. 2022. PMID: 36202805 Free PMC article.
References
-
- Yethon JA, Vinogradov E, Perry MB, Whitfield C. Mutation of the lipopolysaccharide core glycosyltransferase encoded by waaG destabilizes the outer membrane of Escherichia coli by interfering with core phosphorylation. J Bacteriol. 2000;182:5620–5623. doi: 10.1128/JB.182.19.5620-5623.2000. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous