Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec;36(4):395-404.
doi: 10.1111/ger.12432. Epub 2019 Jul 5.

Application of machine learning for diagnostic prediction of root caries

Affiliations

Application of machine learning for diagnostic prediction of root caries

Man Hung et al. Gerodontology. 2019 Dec.

Abstract

Objective: This study sought to utilise machine learning methods in artificial intelligence to select the most relevant variables in classifying the presence and absence of root caries and to evaluate the model performance.

Background: Dental caries is one of the most prevalent oral health problems. Artificial intelligence can be used to develop models for identification of root caries risk and to gain valuable insights, but it has not been applied in dentistry. Accurately identifying root caries may guide treatment decisions, leading to better oral health outcomes.

Methods: Data were obtained from the 2015-2016 National Health and Nutrition Examination Survey and were randomly divided into training and test sets. Several supervised machine learning methods were applied to construct a tool that was capable of classifying variables into the presence and absence of root caries. Accuracy, sensitivity, specificity and area under the receiver operating curve were computed.

Results: Of the machine learning algorithms developed, support vector machine demonstrated the best performance with an accuracy of 97.1%, precision of 95.1%, sensitivity of 99.6% and specificity of 94.3% for identifying root caries. The area under the curve was 0.997. Age was the feature most strongly associated with root caries.

Conclusion: The machine learning algorithms developed in this study perform well and allow for clinical implementation and utilisation by dental and nondental professionals. Clinicians are encouraged to adopt the algorithms from this study for early intervention and treatment of root caries for the ageing population of the United States, and for attaining precision dental medicine.

Keywords: National Health and Nutrition Examination Survey; artificial intelligence; dental medicine; machine learning; quality of life; root caries.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest

The authors declare that there is no conflict of interest.

Figures

Figure 1
Figure 1
Variable importance
Figure 2
Figure 2
ROC curves of the machine learning algorithms

References

    1. Listl S, Galloway J, Mossey PA, Marcenes W. Global Economic Impact of Dental Diseases. Journal of dental research 2015;94(10):1355–1361. - PubMed
    1. Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global burden of oral diseases and risks to oral health. Bulletin of the World Health Organization 2005;83(9):661–669. - PMC - PubMed
    1. Selwitz RH, Ismail AI, Pitts NB. Dental caries. The Lancet 2007;369(9555):51–59. - PubMed
    1. NIDOR. Dental Caries (Tooth Decay) in Adults (Age 20 to 64) National Insitute of Dental and Orofacial Research; 2018(Accessed May 29, 2018):https://www.nidcr.nih.gov/research/data-statistics/dental-caries/adults#....
    1. Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. Journal of dental research 2012;91(10):914–920. - PubMed