A loss-of-function mutation in the DWARF4/ PETANKO5 gene enhances the late-flowering and semi-dwarf phenotypes of the Arabidopsis clock mutant lhy-12;cca1-101 under continuous light without affecting FLC expression
- PMID: 31274993
- PMCID: PMC6565938
- DOI: 10.5511/plantbiotechnology.16.0601a
A loss-of-function mutation in the DWARF4/ PETANKO5 gene enhances the late-flowering and semi-dwarf phenotypes of the Arabidopsis clock mutant lhy-12;cca1-101 under continuous light without affecting FLC expression
Abstract
The circadian clock plays important roles in the control of photoperiodic flowering in Arabidopsis. Mutations in the LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) genes (lhy;cca1) accelerate flowering under short days, whereas lhy;cca1 delays flowering under continuous light (LL). The lhy;cca1 mutant also exhibits short hypocotyls and petioles under LL. However, the molecular mechanisms underlying the regulation of both flowering time and organ lengths in the LHY/CCA1-dependent pathway are not fully understood. To address these questions, we performed EMS mutagenesis of the lhy-12;cca1-101 line and screened for mutations that enhance the lhy;cca1 phenotypes under LL. In this screen, we identified a novel allele of dwarf4 (dwf4) and named it petanko 5 (pta5). A similar level of enhancement of the delay in flowering was observed in these two dwf4 mutants when combined with the lhy;cca1 mutations. The lhy;cca1 and dwf4 mutations did not significantly affect the expression level of the floral repressor gene FLC under LL. Our results suggest that a defect in brassinosteroid (BR) signaling delayed flowering independent of the FLC expression level, at least in plants with the lhy;cca1 mutation grown under LL. The dwf4/pta5 mutation did not enhance the late-flowering phenotype of plants overexpressing SVP under LL, suggesting that SVP and BR function in a common pathway that controls flowering time. Our results suggest that the lhy;cca1 mutant exhibits delayed flowering due to both the BR signaling-dependent and -independent pathways under LL.
Keywords: CCA1; DWF4; LHY; brassinosteroid; flowering time.
Figures
References
-
- Busov VB, Brunner AM, Strauss SH (2008) Genes for control of plant stature and form. New Phytol 177: 589–607 - PubMed
-
- Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ (2007) Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134: 2841–2850 - PubMed
LinkOut - more resources
Full Text Sources
Molecular Biology Databases