Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1987 Aug;133(8):2015-21.
doi: 10.1099/00221287-133-8-2015.

Relationship between the susceptibility of various bacteria to active oxygen species and to intracellular killing by macrophages

Affiliations
Comparative Study

Relationship between the susceptibility of various bacteria to active oxygen species and to intracellular killing by macrophages

Y Yamada et al. J Gen Microbiol. 1987 Aug.

Abstract

The susceptibilities of six micro-organisms to active oxygen species generated in the xanthine oxidase-mediated bactericidal system were as follows: Escherichia coli 81 greater than or equal to Listeria monocytogenes EGD greater than or equal to Salmonella typhimurium HKB-1 greater than or equal to Staphylococcus aureus Smith much greater than Mycobacterium tuberculosis H37Rv approximately equal to Candida albicans NIH A207 (the last two organisms were essentially resistant to this system). The H2O2-Fe-mediated halogenation system exhibited a higher microbicidal activity. When the micro-organisms were compared for their sensitivity to bactericidal activity of resident mouse peritoneal macrophages (M phi s), C. albicans, Staph. aureus and E. coli were killed rapidly, whereas M. tuberculosis, L. monocytogenes and S. typhimurium were more resistant. In tests for the ability to trigger an oxidative burst in mouse peritoneal M phi s (as measured by chemiluminescence), Staph. aureus showed the highest activity followed by the other organisms in the following order: C. albicans greater than E. coli greater than L. monocytogenes congruent to M. tuberculosis. S. typhimurium exhibited no triggering activity. The high susceptibility of Staph. aureus and E. coli to M phi bactericidal activity, and the partial resistance of L. monocytogenes and M. tuberculosis, correlated with their susceptibility to active oxygen and the H2O2-Fe-mediated halogenation reaction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms