Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 5;7(1):168.
doi: 10.1186/s40425-019-0652-7.

IL-27 enhances IL-15/IL-18-mediated activation of human natural killer cells

Affiliations

IL-27 enhances IL-15/IL-18-mediated activation of human natural killer cells

Yeon Ho Choi et al. J Immunother Cancer. .

Erratum in

Abstract

Background: Natural killer (NK) cells are an emerging new tool for cancer immunotherapy. To develop NK cell therapeutics from peripheral blood mononuclear cells (PBMCs) of healthy donors, substantial expansion of primary NK cells is necessary because of the very low number of these cells in peripheral blood. In this study, we aimed to investigate the effect of various cytokine alone or combinations, in expanded NK cells and to analyze the synergetic effect of cytokine combinations.

Methods: Human NK cells were isolated from healthy donor PBMC. Purified NK cells were stimulated with single cytokines or combinations of IL-2, IL-15, IL-18, and IL-27. The expanded NK cells were characterized by flow cytometry, cytotoxicity assay, calcein AM assay and Western blot.

Results: We investigated the synergistic effects of each cytokine, namely, IL-2, IL-15, IL-18, and IL-27, on human NK cells isolated from PBMCs of healthy donors and cultured for 21 days. We identified that IL-15/IL-18/IL-27-mediated activation of NK cells most potently increased NK cell proliferation, cytotoxicity, and IFN-ɣ secretion compared with the activation observed with other treatments, including IL-2, IL-15, and IL-15/IL-18. Additionally, the expression of DNAM-1, NKG2D, CD69, and natural cytotoxicity receptors (NCRs; NKp30 and NKp44) increased on day 21 compared to that on day 0, demonstrating the activation of NK cells. In vitro, expanded NK cells were highly cytotoxic against cancer cells, displaying increased perforin and granzyme B accumulation.

Conclusions: Taken together, these results indicated that IL-27 can synergize on NK cell expansion and activation with IL-15 and IL-18. In addition, we described an improved culture method for ex vivo expansion of human NK cells with IL-15/IL-18/IL-27 stimulation and characterized the response of NK cells to this stimulation.

Keywords: Interferon-gamma; Interleukin (IL)-15; Interleukin (IL)-27; Natural killer (NK) cells; Natural killer cell receptor.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Fig. 1
Fig. 1
Cytokine regulation of the proliferation and cytotoxicity of primary NK cells. a CD3-CD56+ NK cells (0.6–1.8 × 106 / well) isolated from PBMCs were cultured in the indicated cytokines for 21 days. Primary NK cells were imaged using an inverted microscope and counted. Representative images of aggregates of growing primary NK cells in different culture conditions. Bars represent 500 μm; original magnification × 40. b The graph represents the total NK cell number of each group. Symbols indicate cytokine treatment groups (n = 3 / group): IL-2 (▲), IL-15 (▼), IL-15/18 (◆), IL-15/27 (○), IL-18/27 (□), and IL-15/18/27 (red). c. Fold expansion of NK cell numbers compared with those on day 0 following culture of CD3-CD56+ NK cells with the indicated cytokines. The graphs show the mean ± SD. * P < 0.05, ** P < 0.01, and *** P < 0.001, compared with day 0. d NK cell viability. The viable cell numbers were determined by trypan blue staining on days 7, 14 and 21. * P < 0.05, compared with day 14. e NK cytotoxicity assays of various cytokine-stimulated NK cells with K562 target cells on days 7, 14 and 21. The E:T ratios ranged from 0:1 to 10:1. After 4 h of incubation at 37 °C, the lysis of target cells was measured by ELISA. E:T indicates the effector-to-target ratio. The cytolytic activity of human NK cells stimulated with IL-15/18/27 toward K562 cells was significantly increased (*P < 0.05, **P < 0.01, *** P < 0.001) compared with that of resting NK cells (day 0) at the same E:T ratio. f Supernatants were analyzed for IFN-ɣ secretion by ELISA. The data presented are the mean ± SD of three separate experiments., *** P < 0.001, compared with IL-2 treated group
Fig. 2
Fig. 2
Flow cytometry analysis of NK cell receptors on human primary NK cells. (A) Cell surface expression of the indicated molecules on primary human NK cells on day 0 and day 21. Cells were stimulated with cytokine combinations (IL-15, IL-18, and IL-27) for 21 days. Primary NK cells from healthy donors were stained for expression of NK cell activating receptors (a) and inhibitory receptors (b), as indicated. Histograms show representative examples of NK cell receptor expression (shadow area) and show the percentage of NK cells positive for a given receptor relative to the isotype control (gray lines). NK cells were gated as viable, single, CD3-CD56+ cells. (c-d) Statistical analysis for the difference in NK cell receptor expression between day 0 and day 21. Significant differences are indicated in the graph as follows: *P < 0.05 and ** P < 0.01, compared with day 0. n.s: not significant
Fig. 3
Fig. 3
Increased cytolytic granule accumulation in expanded NK cells. a The morphology of expanded NK cells. Cytospin preparations of NK cells (day 0, resting NK cells) and cytokine-activated NK cells (day 21) were stained by Wright-Giemsa staining. Representative images from cultures at 7, 14, and 21 days are shown. Original magnification × 400. b Immunofluorescence staining for perforin and granzyme B for NK cells before (day 0, upper panel) and after culture (day 21, lower panel) in the presence of a cytokine combination (IL-15/IL-18/IL-27). DAPI was used to stain the nuclei (blue). The negative control using secondary antibody (anti-IgG) only demonstrated low nonspecific binding of the secondary antibody. The data shown are representative of three independent experiments. Bars represent 10 μm. Original magnification × 100. c Western blotting analysis for perforin and granzyme B. NK cells were stimulated with cytokines (IL-15, IL-15/IL-18, and IL-15/IL-18/IL-27) for 21 days. The graph represents the relative expression of each protein. Protein bands were quantitated by densitometric analysis. The ratio of the intensity of protein bands relative to that of β-actin was calculated. Experiments were repeated three times with similar results. *P < 0.05, compared with cells cultured in the presence of IL-15 alone
Fig. 4
Fig. 4
Measurement of NK cell cytotoxicity by imaging cytometry. a K562 target cells were stained with calcein AM. After 4 h of incubation with 21-day-expanded NK cells (stimulated with IL-15/18/27), fluorescence images show progressive loss of fluorescence intensity of the K562 cells at various E:T ratios. Representative bright field, calcein, and overlay images showing E:T ratio-dependent target cell killing. Original magnification × 100. The graph represents the percentage of viable or dead target cells. *** P < 0.001 was considered signigicant. b A high power view of the calcein AM assay showing the progress of NK cell killing. Nearly all of the target cells were killed in a 10:1 effector-to-target cell sample, while calcein AM-labeled K562 cells were not killed in the control image. Bright-field and fluorescence overlay images of calcein show K562 cells undergoing apoptotic death following interaction with NK cells. The images were derived from a Zeiss LSM 510 microscope (left). The graph (right) represents cytotoxicity against K562 cells with expanded NK cells on days 7, 14 and 21 over the 4 h of the assay. *P < 0.05, ** P < 0.01, ***P <0.001 compared with day 0. Symbols indicate cytokine treatment groups (n = 3 / group): day 0 (▲), day 7 (▼), day 14 (◆), day 21 (red ○), and K562 cells only (●). c Immunoblot analysis for caspase-8, − 9 and − 3 activation. K562 cells were cocultured with primary NK cells for 4 h. Immunoblotting was performed with antibodies specific for caspase-8, − 9 and − 3 and their cleaved forms. β-actin was used as an internal standard. d Protein bands were quantitated by densitometric analysis. The ratio of the intensity of protein bands relative to that of β-actin was calculated. Bar graph represents the relative expression of cleaved caspase-8, − 9 and − 3 proteins. Experiments were repeated three times with similar results

References

    1. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22:633–640. doi: 10.1016/S1471-4906(01)02060-9. - DOI - PubMed
    1. Caligiuri MA. Human natural killer cells. Blood. 2008;112:461–469. doi: 10.1182/blood-2007-09-077438. - DOI - PMC - PubMed
    1. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9:503–510. doi: 10.1038/ni1582. - DOI - PubMed
    1. Di Santo JP. Natural killer cells: diversity in search of a niche. Nat Immunol. 2008;9:473–475. doi: 10.1038/ni.f.201. - DOI - PubMed
    1. Luetke-Eversloh M, Killig M, Romagnani C. Signatures of human NK cell development and terminal differentiation. Front Immunol. 2013;4:499. doi: 10.3389/fimmu.2013.00499. - DOI - PMC - PubMed

Publication types

LinkOut - more resources