Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2019 Jul 5;23(1):245.
doi: 10.1186/s13054-019-2531-5.

Effects of sedatives and opioids on trigger and cycling asynchronies throughout mechanical ventilation: an observational study in a large dataset from critically ill patients

Collaborators, Affiliations
Observational Study

Effects of sedatives and opioids on trigger and cycling asynchronies throughout mechanical ventilation: an observational study in a large dataset from critically ill patients

Candelaria de Haro et al. Crit Care. .

Abstract

Background: In critically ill patients, poor patient-ventilator interaction may worsen outcomes. Although sedatives are often administered to improve comfort and facilitate ventilation, they can be deleterious. Whether opioids improve asynchronies with fewer negative effects is unknown. We hypothesized that opioids alone would improve asynchronies and result in more wakeful patients than sedatives alone or sedatives-plus-opioids.

Methods: This prospective multicenter observational trial enrolled critically ill adults mechanically ventilated (MV) > 24 h. We compared asynchronies and sedation depth in patients receiving sedatives, opioids, or both. We recorded sedation level and doses of sedatives and opioids. BetterCare™ software continuously registered ineffective inspiratory efforts during expiration (IEE), double cycling (DC), and asynchrony index (AI) as well as MV modes. All variables were averaged per day. We used linear mixed-effects models to analyze the relationships between asynchronies, sedation level, and sedative and opioid doses.

Results: In 79 patients, 14,166,469 breaths were recorded during 579 days of MV. Overall asynchronies were not significantly different in days classified as sedatives-only, opioids-only, and sedatives-plus-opioids and were more prevalent in days classified as no-drugs than in those classified as sedatives-plus-opioids, irrespective of the ventilatory mode. Sedative doses were associated with sedation level and with reduced DC (p < 0.0001) in sedatives-only days. However, on days classified as sedatives-plus-opioids, higher sedative doses and deeper sedation had more IEE (p < 0.0001) and higher AI (p = 0.0004). Opioid dosing was inversely associated with overall asynchronies (p < 0.001) without worsening sedation levels into morbid ranges.

Conclusions: Sedatives, whether alone or combined with opioids, do not result in better patient-ventilator interaction than opioids alone, in any ventilatory mode. Higher opioid dose (alone or with sedatives) was associated with lower AI without depressing consciousness. Higher sedative doses administered alone were associated only with less DC.

Trial registration: ClinicalTrial.gov, NCT03451461.

Keywords: Asynchronies; Double cycling; Ineffective inspiratory efforts during expiration; Mechanical ventilation; Opioids; Sedatives.

PubMed Disclaimer

Conflict of interest statement

Drs. Blanch and Murias are inventors of the Corporació Sanitaria Parc Taulí owned US patent: “Method and system for managing related patient parameters provided by a monitoring device,” US Patent No. 12/538,940. Blanch, Montanya, Murias, and Lucangelo own stock options of BetterCare S.L., which is a research and development spinoff of Corporació Sanitària Parc Taulí (Spain). Kacmarek is a consultant for Medtronic and Orange Medical and has received research grants from Medtronic and VennerMedical. The other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Mean percentages of asynchronous breaths estimated with the generalized linear mixed-effects model by treatment groups. Data are represented as mean (95% CI). Statistical significance (two-sided) among groups is indicated; p values are adjusted by the Bonferroni method
Fig. 2
Fig. 2
Mean levels of SAS and SOFA estimated with the linear mixed-effects model by treatment groups. Data are represented as mean (95% CI). Statistical significance (two-sided) among groups is indicated; p values are adjusted by the Bonferroni method. The within-subject residuals of the SOFA model departure from the theoretical normal distribution (see Additional file 5: Figure S4 left)
Fig. 3
Fig. 3
Effect of the dose of sedatives and opioids administered on asynchronies. Average change in asynchronies per one unit change in dose equivalent
Fig. 4
Fig. 4
Mean percentages of asynchronous breaths estimated with the generalized linear mixed-effects model according to mechanical ventilator mode, by treatment groups. Data are represented as mean (95% CI)

References

    1. Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Lujan M, Garcia-Esquirol O, Chacon E, Estruga A, Oliva JC, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41(4):633–641. doi: 10.1007/s00134-015-3692-6. - DOI - PubMed
    1. Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515–1522. doi: 10.1007/s00134-006-0301-8. - DOI - PubMed
    1. Vaporidi K, Babalis D, Chytas A, Lilitsis E, Kondili E, Amargianitakis V, Chouvarda I, Maglaveras N, Georgopoulos D. Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensive Care Med. 2017;43(2):184–191. doi: 10.1007/s00134-016-4593-z. - DOI - PubMed
    1. Subira C, de Haro C, Magrans R, Fernandez R, Blanch L. Minimizing asynchronies in mechanical ventilation: current and future trends. Respir Care. 2018;63(4):464–478. doi: 10.4187/respcare.05949. - DOI - PubMed
    1. Schmidt M, Demoule A, Polito A, Porchet R, Aboab J, Siami S, Morelot-Panzini C, Similowski T, Sharshar T. Dyspnea in mechanically ventilated critically ill patients. Crit Care Med. 2011;39(9):2059–2065. doi: 10.1097/CCM.0b013e31821e8779. - DOI - PubMed

Publication types

MeSH terms

Associated data