Filtering of neurophysiologic signals
- PMID: 31277873
- DOI: 10.1016/B978-0-444-64032-1.00004-7
Filtering of neurophysiologic signals
Abstract
Clinical neurophysiologic signals cover a broad range of frequencies. Filters help to emphasize waveforms that are of clinical or research interest and to mold their frequency characteristics to suit the purpose of the investigation. Some frequency content is obvious and well known, such as the alpha rhythm (8-11Hz) or spindles (12-14Hz) in the EEG. Other frequencies are not initially discriminable from background activity and require filtering in order to examine them, such as high-frequency oscillations (80-500Hz) in EEG and brainstem auditory evoked potentials (100-3000Hz). Often used to mitigate the effects of background noise or artifact, filters can be used specifically to attenuate unwanted frequencies, such as mains interference (50 or 60Hz) and electrode offset potential (<0.1Hz). For digital instrumentation, an antialiasing filter (below Nyquist) is always needed prior to sampling by the analog-to-digital converter. Once the signals are in the digital realm, sophisticated filtering operations can be carried out post hoc; but in order not to be misled, the neurophysiologist must always bear in mind the effect of filtering on the physiological waveform.
Keywords: Bandpass; Digital filter; Filter; Filters; Frequency response decibel; Highpass; Instrumentation; Lowpass; Notch filter; Phase shift.
Copyright © 2019 Elsevier B.V. All rights reserved.
Similar articles
-
Effects of analog and digital filtering on brain stem auditory evoked potentials.Electroencephalogr Clin Neurophysiol. 1980 Mar;48(3):361-4. doi: 10.1016/0013-4694(80)90273-4. Electroencephalogr Clin Neurophysiol. 1980. PMID: 6153356
-
Analog and digital filtering of the brain stem auditory evoked response.Ann Otol Rhinol Laryngol. 1989 Jul;98(7 Pt 1):508-14. doi: 10.1177/000348948909800704. Ann Otol Rhinol Laryngol. 1989. PMID: 2751210
-
Unrecognized errors due to analog filtering of the brain-stem auditory evoked response.Electroencephalogr Clin Neurophysiol. 1986 May;65(3):203-11. doi: 10.1016/0168-5597(86)90055-9. Electroencephalogr Clin Neurophysiol. 1986. PMID: 2420573
-
Brainstem auditory-evoked potentials.Crit Rev Biomed Eng. 1985;13(2):97-123. Crit Rev Biomed Eng. 1985. PMID: 3905257 Review.
-
Digital filtering of auditory evoked potentials.Ear Hear. 1988 Jun;9(3):101-7. doi: 10.1097/00003446-198806000-00001. Ear Hear. 1988. PMID: 3044897 Review.
Cited by
-
Universal Recommendations on Planning and Performing the Auditory Brainstem Responses (ABR) with a Focus on Mice and Rats.Audiol Res. 2023 Jun 2;13(3):441-458. doi: 10.3390/audiolres13030039. Audiol Res. 2023. PMID: 37366685 Free PMC article.
-
Inter-hospital moderate and advanced Alzheimer's disease detection through convolutional neural networks.Heliyon. 2024 Feb 15;10(4):e26298. doi: 10.1016/j.heliyon.2024.e26298. eCollection 2024 Feb 29. Heliyon. 2024. PMID: 38404892 Free PMC article.
-
Erroneous detection of desensitization doses in the prevention of hypersensitivity reactions.BMC Res Notes. 2023 Feb 3;16(1):12. doi: 10.1186/s13104-023-06278-2. BMC Res Notes. 2023. PMID: 36737795 Free PMC article.
-
Mental Disorder Diagnosis from EEG Signals Employing Automated Leaning Procedures Based on Radial Basis Functions.J Med Biol Eng. 2022;42(6):853-859. doi: 10.1007/s40846-022-00758-9. Epub 2022 Nov 11. J Med Biol Eng. 2022. PMID: 36407571 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources