A practical guide to intelligent image-activated cell sorting
- PMID: 31278398
- DOI: 10.1038/s41596-019-0183-1
A practical guide to intelligent image-activated cell sorting
Erratum in
-
Author Correction: A practical guide to intelligent image-activated cell sorting.Nat Protoc. 2019 Nov;14(11):3273. doi: 10.1038/s41596-019-0252-5. Nat Protoc. 2019. PMID: 31624371
Abstract
Intelligent image-activated cell sorting (iIACS) is a machine-intelligence technology that performs real-time intelligent image-based sorting of single cells with high throughput. iIACS extends beyond the capabilities of fluorescence-activated cell sorting (FACS) from fluorescence intensity profiles of cells to multidimensional images, thereby enabling high-content sorting of cells or cell clusters with unique spatial chemical and morphological traits. Therefore, iIACS serves as an integral part of holistic single-cell analysis by enabling direct links between population-level analysis (flow cytometry), cell-level analysis (microscopy), and gene-level analysis (sequencing). Specifically, iIACS is based on a seamless integration of high-throughput cell microscopy (e.g., multicolor fluorescence imaging, bright-field imaging), cell focusing, cell sorting, and deep learning on a hybrid software-hardware data management infrastructure, enabling real-time automated operation for data acquisition, data processing, intelligent decision making, and actuation. Here, we provide a practical guide to iIACS that describes how to design, build, characterize, and use an iIACS machine. The guide includes the consideration of several important design parameters, such as throughput, sensitivity, dynamic range, image quality, sort purity, and sort yield; the development and integration of optical, microfluidic, electrical, computational, and mechanical components; and the characterization and practical usage of the integrated system. Assuming that all components are readily available, a team of several researchers experienced in optics, electronics, digital signal processing, microfluidics, mechatronics, and flow cytometry can complete this protocol in ~3 months.
References
-
- Nitta, N. et al. Intelligent image-activated cell sorting. Cell 175, 266–276 (2018). - PubMed
-
- Mikami, H. et al. Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime limit. Optica 5, 117–126 (2018).
-
- Kanno, H., Mikami, H., Kaya, Y., Ozeki, Y. & Goda, K. Simple, stable, compact implementation of frequency-division-multiplexed microscopy by inline interferometry. Opt. Lett. 44, 467–470 (2019). - PubMed
-
- Shivhare, P. K., Bhadra, A., Sajeesh, P., Prabhakar, A. & Sen, A. K. Hydrodynamic focusing and interdistance control of particle-laden flow for microflow cytometry. Microfluid. Nanofluidics 20, 86 (2016).
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
