Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 31;9(14):4168-4181.
doi: 10.7150/thno.34390. eCollection 2019.

Gadolinium-Chelated Conjugated Polymer-Based Nanotheranostics for Photoacoustic/Magnetic Resonance/NIR-II Fluorescence Imaging-Guided Cancer Photothermal Therapy

Affiliations

Gadolinium-Chelated Conjugated Polymer-Based Nanotheranostics for Photoacoustic/Magnetic Resonance/NIR-II Fluorescence Imaging-Guided Cancer Photothermal Therapy

Xiaoming Hu et al. Theranostics. .

Abstract

Our exploiting versatile multimodal theranostic agent aims to integrate the complementary superiorities of photoacoustic imaging (PAI), second near-infrared (NIR-II, 1000-1700) fluorescence and T1-weighted magnetic resonance imaging (MRI) with an ultimate objective of perfecting cancer diagnosis, thus improving cancer therapy efficacy. Herein, we engineered and prepared a water-soluble gadolinium-chelated conjugated polymer-based theranostic nanomedicine (PFTQ-PEG-Gd NPs) for in vivo tri-mode PA/MR/NIR-II imaging-guided tumor photothermal therapy (PTT). Methods: We firstly constructed a semiconducting polymer composed of low-bandgap donor-acceptor (D-A) which afforded the strong NIR absorption for PAI/PTT and long fluorescence emission to NIR-II region for in vivo imaging. Then, the remaining carboxyl groups of the polymeric NPs could effectively chelate with Gd3+ ions for MRI. The in vitro characteristics of the PFTQ-PEG-Gd NPs were studied and the in vivo multimode imaging as well as anti-tumor efficacy of the NPs was evaluated using 4T1 tumor-bearing mice. Results: The obtained theranostic agent showed excellent chemical and optical stability as well as low biotoxicity. After 24 h of systemic administration using PQTF-PEG-Gd NPs, the tumor sites of living mice exhibited obvious enhancement in PA, NIR-II fluorescence and positive MR signal intensities. Better still, a conspicuous tumor growth restraint was detected under NIR light irradiation after administration of PQTF-PEG-Gd NPs, indicating the efficient photothermal potency of the nano-agent. Conclusion: we triumphantly designed and synthesized a novel and omnipotent semiconducting polymer nanoparticles-based theranostic platform for PAI, NIR-II fluorescence imaging as well as positive MRI-guided tumor PTT in living mice. We expect that such a novel organic nano-platform manifests a great promise for high spatial resolution and deep penetration cancer theranostics.

Keywords: conjugated polymer; magnetic resonance imaging; photoacoustic imaging; photothermal therapy; second near-infrared fluorescence imaging.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

Figures

Scheme 1
Scheme 1
Schematic Description of the Deep-Tissue and High-Resolution Multimodality Imaging-Guided Cancer Photothermal Therapy in Vivo Using PFTQ-PEG-Gd NPs.
Figure 1
Figure 1
Basic characterization of PFTQ-PEG-Gd NPs and PFTQ-PEG NPs. Representative TEM images of (A) PFTQ-PEG NPs and (B) PFTQ-PEG-Gd NPs. (C) Zeta potentials of PFTQ-PEG-Gd NPs and PFTQ-PEG NPs. Hydrodynamic size distribution graphs of (D) PFTQ-PEG NPs, (E) PFTQ-PEG-Gd NPs and photographs of them in PBS (100 μg mL-1, pH 7.4). (F) The Gd-chelated stability evaluation of PFTQ-PEG-Gd NPs cultivating in different PBS (pH 6.5 and 7.4).
Figure 2
Figure 2
Optical properties of PFTQ-PEG-Gd NPs. (A) Optical spectra of the NPs, manifesting the absorption crest at 760 nm as well as a peak emission at 1056 nm. (B) NIR-II fluorescence images of the NPs (100 μg mL-1) and PBS (pH = 7.4). (C) Photostability assays of the NPs in serum, saline and water via collecting their NIR-II fluorescence signals. (D) Photostability of the NPs (50 μg mL-1) and commercial ICG NPs (50 μg mL-1) via recording their maximum absorption peak (laser exposure: 808 nm, 1 W cm-2).
Figure 3
Figure 3
Extracorporeal imaging capacity and photothermal experiments of PFTQ-PEG-Gd NPs. (A) In vitro PA images of the NPs with varying contents ranging from 31.25 to 500 µg mL-1. (B) Linear dependence between the PA signals and concentrations of the NPs (R2 = 0.996). (C) In vitro positive magnetic contrast images of the NPs (15.6, 31.3, 62.5, 125, 250 and 500 µg mL-1) at varying gadolinium contents (from 6.8 to 218.8 µM), the commercial Gd-DTPA contrast agent (with the equivalent Gd content) served as the control group. (D) Plot of relaxation rates (1/T1) as a function of Gd content of PFTQ-PEG-Gd NPs and Gd-DTPA in saline. (E) Photothermal conversion behavior of PFTQ-PEG-Gd NPs at varying contents (0 - 0.5 mg mL-1) exposed an 808 nm light irradiation. (F) IR thermal images of PFTQ-PEG-Gd NPs at varying contents (0 - 0.5 mg mL-1) under an 808 nm light irradiation.
Figure 4
Figure 4
Intravital imaging of 4T1 neoplastic mice. (A) In vivo MRI (below) and PAI (top) of tumorous mice imaged at varying point-in-time after intravenous administration with PFTQ-PEG-Gd NPs. (B) Whole-body MRI images of living mice at 24 h post-injection and pre-injection. (C) PA and MR relative signal values of the tumor regions from neoplastic mice systemically treated with PFTQ-PEG-Gd NPs at different post-injection time points.
Figure 5
Figure 5
Intravital imaging of 4T1 tumor mice. (A) The NIR-II image of the vascular tissues of the mouse treated with PFTQ-PEG-Gd NPs at 2 min post-injection under 808 nm excitation. The red arrows show the blood vessels. (B) The NIR-II fluorescence of tumor/normal tissue ratio from neoplastic mice systemically treated with PFTQ-PEG-Gd NPs at different post-injection time points. (C) The intravital NIR-II fluorescence contrasts of 4T1 neoplastic mice at varying time points (2, 4, 10, 24, and 48 h) after systemic injection of PFTQ-PEG-Gd NPs. (D) The ex-biodistribution of the agent in neoplastic mice at 24 h post-injection. From left to right and from top to below: tumor, heart, liver, spleen, lung and kidney. (E) Ex-vivo NIR-II fluorescence signal values of some organs from neoplastic mice after 24 h injection with the agent.
Figure 6
Figure 6
Intravital photothermal tumor therapy. (A) IR thermal images of 4T1 neoplastic mice; (B) Temperature rise on tumor areas of the neoplastic mice injected without or with the agent under an 808 nm laser excitation (1 W cm-2); (C) Tumor volume growth curves of each treatment group of mice; (D) Body weight changes of mice from three treatment groups; (E) Representative photographs of the 4T1 tumors collected from these mice at the end of PTT.
Figure 7
Figure 7
(A) Histological H&E staining of tumor and various organs from the treatment mice. Scale bar: 100 µm. (B) H&E-stained tumors from (left) group “Saline + laser”, (middle) group “Agent” and (right) group “Agent + laser”. Scale bar: 20 µm.

Similar articles

Cited by

References

    1. Li J, Pu K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev. 2019;48:38–71. - PubMed
    1. Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional Nanomaterials for Phototherapies of Cancer. Chem Rev. 2014;114:10869–10939. - PubMed
    1. Ma L, Liu Y, Liu L, Jiang A, Mao F, Zhou J. et al. Simultaneous Activation of Short-Wave Infrared (SWIR) Light and Paramagnetism by a Functionalized Shell for High Penetration and Spatial Resolution Theranostics. Adv Funct Mater. 2018;28:1705057.
    1. Ge J, Jia Q, Liu W, Guo L, Liu Q, Lan M. et al. Red-Emissive Carbon Dots for Fluorescent, Photoacoustic, and Thermal Theranostics in Living Mice. Adv Mater. 2015;27:4169–4177. - PubMed
    1. Guo B, Sheng Z, Hu D, Li A, Xu S, Manghnani P. et al. Molecular Engineering of Conjugated Polymers for Biocompatible Organic Nanoparticles with Highly Efficient Photoacoustic and Photothermal Performance in Cancer Theranostics. ACS Nano. 2017;11:10124–10134. - PubMed

Publication types