Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 7;55(61):8900-8914.
doi: 10.1039/c9cc03845k. Epub 2019 Jul 8.

Tailoring the physicochemical properties of solution-processed transition metal dichalcogenides via molecular approaches

Affiliations

Tailoring the physicochemical properties of solution-processed transition metal dichalcogenides via molecular approaches

Stefano Ippolito et al. Chem Commun (Camb). .

Abstract

During the last five years, the scientific community has witnessed tremendous progress in solution-processed semiconducting 2D transition metal dichalcogenides (TMDs), in combination with the use of chemical approaches to finely tune their electrical, optical, mechanical and thermal properties. Because of the strong structure-properties relationship, the adopted production methods contribute in affecting the quality and characteristics of the nanomaterials, along with the costs, scalability and yield of the process. Nevertheless, a number of (supra)molecular approaches have been developed to meticulously tailor the properties of TMDs via formation of both covalent and non-covalent bonds, where small molecules, (bio)polymers or nanoparticles interact with the basal plane and/or edges of the 2D nanosheets in a controlled fashion. In this Feature Article, we will highlight the recent advancements in the development of production strategies and molecular approaches for tailoring the properties of solution-processed TMD nanosheets. We will also discuss opportunities and challenges towards the realization of multifunctional devices and sensors based on such novel hybrid nanomaterials.

PubMed Disclaimer

LinkOut - more resources