Skp1 isoforms are differentially modified by a dual function prolyl 4-hydroxylase/N-acety lglucosaminyltransferase in a plant pathogen
- PMID: 31281925
- PMCID: PMC6774341
- DOI: 10.1093/glycob/cwz049
Skp1 isoforms are differentially modified by a dual function prolyl 4-hydroxylase/N-acety lglucosaminyltransferase in a plant pathogen
Abstract
Skp1 is hydroxylated by an O2-dependent prolyl hydroxylase (PhyA) that contributes to O2-sensing in the social amoeba Dictyostelium and the mammalian pathogen Toxoplasma gondii. HO-Skp1 is subject to glycosylation and the resulting pentasaccharide affects Skp1 conformation in a way that influences association of Skp1 with F-box proteins, and potentially the assembly of E3(SCF) ubiquitin ligase complexes that mediate the polyubiquitination of target proteins that are degraded in the 26S-proteasome. To investigate the conservation and specificity of these modifications, we analyzed proteins from the oomycete Pythium ultimum, an important crop plant pathogen. Putative coding sequences for Pythium's predicted PhyA and first glycosyltransferase in the predicted five-enzyme pathway, a GlcNAc-transferase (Gnt1), predict a bifunctional enzyme (Phgt) that, when expressed in Dictyostelium, rescued a knockout of phyA but not gnt1. Though recombinant Phgt was also unable to glycosylate Dictyostelium HO-Skp1, it could hydrolyze UDP-GlcNAc and modify a synthetic hydroxypeptide from Dictyostelium Skp1. Pythium encodes two highly similar Skp1 isoforms, but only Skp1A was efficiently hydroxylated and glycosylated in vitro. While kinetic analysis revealed no evidence for processive processing of Skp1, the physical linkage of the two activities implies dedication to Skp1 in vivo. These findings indicate a widespread occurrence of the Skp1 modification pathway across protist phylogeny, suggest that both Gnt1 and PhyA are specific for Skp1 and indicate that the second Skp1 provides a bypass mechanism for O2-regulation in Pythium and other protists that conserve this gene.
Keywords: Pythium ultimum; E3 ubiquitin ligase; glycosyltransferase; plant pathogen; prolyl hydroxylase.
© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Figures






Similar articles
-
A terminal α3-galactose modification regulates an E3 ubiquitin ligase subunit in Toxoplasma gondii.J Biol Chem. 2020 Jul 3;295(27):9223-9243. doi: 10.1074/jbc.RA120.013792. Epub 2020 May 15. J Biol Chem. 2020. PMID: 32414843 Free PMC article.
-
Characterization of a cytoplasmic glucosyltransferase that extends the core trisaccharide of the Toxoplasma Skp1 E3 ubiquitin ligase subunit.J Biol Chem. 2017 Nov 10;292(45):18644-18659. doi: 10.1074/jbc.M117.809301. Epub 2017 Sep 19. J Biol Chem. 2017. PMID: 28928220 Free PMC article.
-
O2 sensing-associated glycosylation exposes the F-box-combining site of the Dictyostelium Skp1 subunit in E3 ubiquitin ligases.J Biol Chem. 2017 Nov 17;292(46):18897-18915. doi: 10.1074/jbc.M117.809160. Epub 2017 Sep 19. J Biol Chem. 2017. PMID: 28928219 Free PMC article.
-
A cytoplasmic prolyl hydroxylation and glycosylation pathway modifies Skp1 and regulates O2-dependent development in Dictyostelium.Biochim Biophys Acta. 2010 Feb;1800(2):160-71. doi: 10.1016/j.bbagen.2009.11.006. Epub 2009 Nov 13. Biochim Biophys Acta. 2010. PMID: 19914348 Free PMC article. Review.
-
A sporadic Parkinson's disease model via silencing of the ubiquitin-proteasome/E3 ligase component, SKP1A.J Neural Transm (Vienna). 2024 Jun;131(6):675-707. doi: 10.1007/s00702-023-02687-6. Epub 2023 Aug 29. J Neural Transm (Vienna). 2024. PMID: 37644186 Free PMC article. Review.
Cited by
-
A terminal α3-galactose modification regulates an E3 ubiquitin ligase subunit in Toxoplasma gondii.J Biol Chem. 2020 Jul 3;295(27):9223-9243. doi: 10.1074/jbc.RA120.013792. Epub 2020 May 15. J Biol Chem. 2020. PMID: 32414843 Free PMC article.
-
Skp1 Dimerization Conceals Its F-Box Protein Binding Site.Biochemistry. 2020 Apr 21;59(15):1527-1536. doi: 10.1021/acs.biochem.0c00094. Epub 2020 Apr 13. Biochemistry. 2020. PMID: 32227851 Free PMC article.
-
Glycomics, Glycoproteomics, and Glycogenomics: An Inter-Taxa Evolutionary Perspective.Mol Cell Proteomics. 2021;20:100024. doi: 10.1074/mcp.R120.002263. Epub 2021 Jan 6. Mol Cell Proteomics. 2021. PMID: 32994314 Free PMC article. Review.
-
Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii.J Biol Chem. 2020 Dec 4;295(49):16545-16561. doi: 10.1074/jbc.RA120.013998. Epub 2020 Sep 15. J Biol Chem. 2020. PMID: 32934009 Free PMC article.
-
Oxygen-dependent regulation of E3(SCF)ubiquitin ligases and a Skp1-associated JmjD6 homolog in development of the social amoeba Dictyostelium.J Biol Chem. 2022 Sep;298(9):102305. doi: 10.1016/j.jbc.2022.102305. Epub 2022 Aug 4. J Biol Chem. 2022. PMID: 35933019 Free PMC article.
References
-
- Bochkareva E, Frappier L, Edwards AM, Bochkarev A. 1998. The RPA32 subunit of human replication protein A contains a single-stranded DNA-binding domain. J Biol Chem. 273:3932–3936. - PubMed
-
- Deshaies RJ, Joazeiro CA. 2009. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 78:399–434. - PubMed
-
- Heise N, Singh D, van der Wel H, Sassi SO, Johnson JM, Feasley CL, Koeller CM, Previato JO, Mendonça-Previato L, West CM. 2009. Molecular analysis of a UDP-GlcNAc:polypeptide alpha-N-acetylglucosaminyltransferase implicated in the initiation of mucin-type O-glycosylation in Trypanosoma cruzi. Glycobiology. 19:918–933. - PMC - PubMed
-
- Islam MS, Leissing TM, Chowdhury R, Hopkinson RJ, Schofield CJ. 2018. 2-oxoglutarate-dependent oxygenases. Annu Rev Biochem. 87:585–620. - PubMed