Conical Intersections in Organic Molecules: Benchmarking Mixed-Reference Spin-Flip Time-Dependent DFT (MRSF-TD-DFT) vs Spin-Flip TD-DFT
- PMID: 31283235
- DOI: 10.1021/acs.jpca.9b06142
Conical Intersections in Organic Molecules: Benchmarking Mixed-Reference Spin-Flip Time-Dependent DFT (MRSF-TD-DFT) vs Spin-Flip TD-DFT
Abstract
The mixed-reference spin-flip time-dependent density functional theory (MRSF-TD-DFT) method eliminates the erroneous spin contamination of the SF-TD-DFT methodology, while retaining the conceptual and practical simplicity of the latter. The availability of the analytic gradient of the energy of the MRSF-TD-DFT response states enables automatic geometry optimization of the targeted states. Here, we apply the new method to optimize the geometry of several S1/S0 conical intersections occurring in typical organic molecules. We demonstrate that MRSF-TD-DFT is capable of producing the correct double-cone topology of the intersections and describing the geometry of the lowest-energy conical intersections and their relative energies with accuracy matching that of the best multireference wavefunction ab initio methods. In this regard, MRSF-TD-DFT differs from many popular single-reference methods, such as, e.g., the linear response TD-DFT method, which fail to produce the correct topology of the intersections. As the new methodology completely eliminates the ambiguity with the identification of the response states as proper singlets or triplets, which is plaguing the SF-TD-DFT calculations, it can be used for automatic geometry optimization and molecular dynamic simulations not requiring constant human intervention.
Similar articles
-
Efficient implementations of analytic energy gradient for mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT).J Chem Phys. 2019 May 14;150(18):184111. doi: 10.1063/1.5086895. J Chem Phys. 2019. PMID: 31091897
-
Performance Analysis and Optimization of Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory (MRSF-TDDFT) for Vertical Excitation Energies and Singlet-Triplet Energy Gaps.J Phys Chem A. 2019 Sep 19;123(37):7991-8000. doi: 10.1021/acs.jpca.9b07556. Epub 2019 Sep 5. J Phys Chem A. 2019. PMID: 31436418
-
Eliminating spin-contamination of spin-flip time dependent density functional theory within linear response formalism by the use of zeroth-order mixed-reference (MR) reduced density matrix.J Chem Phys. 2018 Sep 14;149(10):104101. doi: 10.1063/1.5044202. J Chem Phys. 2018. PMID: 30219009
-
Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory: Multireference Advantages with the Practicality of Linear Response Theory.J Phys Chem Lett. 2023 Oct 5;14(39):8896-8908. doi: 10.1021/acs.jpclett.3c02296. Epub 2023 Sep 28. J Phys Chem Lett. 2023. PMID: 37767969 Free PMC article. Review.
-
Relativistic time-dependent density functional theories.Chem Soc Rev. 2018 Jun 18;47(12):4481-4509. doi: 10.1039/c8cs00175h. Chem Soc Rev. 2018. PMID: 29808872 Review.
Cited by
-
Relief of excited-state antiaromaticity enables the smallest red emitter.Nat Commun. 2021 Sep 13;12(1):5409. doi: 10.1038/s41467-021-25677-2. Nat Commun. 2021. PMID: 34518551 Free PMC article.
-
Thermal Half-Lives of Azobenzene Derivatives: Virtual Screening Based on Intersystem Crossing Using a Machine Learning Potential.ACS Cent Sci. 2023 Jan 25;9(2):166-176. doi: 10.1021/acscentsci.2c00897. eCollection 2023 Feb 22. ACS Cent Sci. 2023. PMID: 36844486 Free PMC article.
-
A Plausible Mechanism of Uracil Photohydration Involves an Unusual Intermediate.J Phys Chem Lett. 2022 Aug 4;13(30):7072-7080. doi: 10.1021/acs.jpclett.2c01694. Epub 2022 Jul 28. J Phys Chem Lett. 2022. PMID: 35900137 Free PMC article.
-
Excited state non-adiabatic dynamics of large photoswitchable molecules using a chemically transferable machine learning potential.Nat Commun. 2022 Jun 15;13(1):3440. doi: 10.1038/s41467-022-30999-w. Nat Commun. 2022. PMID: 35705543 Free PMC article.
-
Machine Learning for Electronically Excited States of Molecules.Chem Rev. 2021 Aug 25;121(16):9873-9926. doi: 10.1021/acs.chemrev.0c00749. Epub 2020 Nov 19. Chem Rev. 2021. PMID: 33211478 Free PMC article.
LinkOut - more resources
Full Text Sources
Research Materials