Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb;39(2):328-340.
doi: 10.1109/TMI.2019.2926501. Epub 2019 Jul 3.

Specular Reflections Removal for Endoscopic Image Sequences With Adaptive-RPCA Decomposition

Specular Reflections Removal for Endoscopic Image Sequences With Adaptive-RPCA Decomposition

Ranyang Li et al. IEEE Trans Med Imaging. 2020 Feb.

Abstract

Specular reflections (i.e., highlight) always exist in endoscopic images, and they can severely disturb surgeons' observation and judgment. In an augmented reality (AR)-based surgery navigation system, the highlight may also lead to the failure of feature extraction or registration. In this paper, we propose an adaptive robust principal component analysis (Adaptive-RPCA) method to remove the specular reflections in endoscopic image sequences. It can iteratively optimize the sparse part parameter during RPCA decomposition. In this new approach, we first adaptively detect the highlight image based on pixels. With the proposed distance metric algorithm, it then automatically measures the similarity distance between the sparse result image and the detected highlight image. Finally, the low-rank and sparse results are obtained by enforcing the similarity distance between the two types of images to fall within a certain range. Our method has been verified by multiple different types of endoscopic image sequences in minimally invasive surgery (MIS). The experiments and clinical blind tests demonstrate that the new Adaptive-RPCA method can obtain the optimal sparse decomposition parameters directly and can generate robust highlight removal results. Compared with the state-of-the-art approaches, the proposed method not only achieves the better highlight removal results but also can adaptively process image sequences.

PubMed Disclaimer

Publication types

MeSH terms