Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep:90:103087.
doi: 10.1016/j.bioorg.2019.103087. Epub 2019 Jul 2.

Identification of chebulinic acid as a dual targeting inhibitor of protein tyrosine phosphatases relevant to insulin resistance

Affiliations

Identification of chebulinic acid as a dual targeting inhibitor of protein tyrosine phosphatases relevant to insulin resistance

Sun-Young Yoon et al. Bioorg Chem. 2019 Sep.

Abstract

Natural products as antidiabetic agents have been shown to stimulate insulin signaling via the inhibition of the protein tyrosine phosphatases relevant to insulin resistance. Previously, we have identified PTPN9 and DUSP9 as potential antidiabetic targets and a multi-targeting natural product thereof. In this study, knockdown of PTPN11 increased AMPK phosphorylation in differentiated C2C12 muscle cells by 3.8 fold, indicating that PTPN11 could be an antidiabetic target. Screening of a library of 658 natural products against PTPN9, DUSP9, or PTPN11 identified chebulinic acid (CA) as a strong allosteric inhibitor with a slow cooperative binding to PTPN9 (IC50 = 34 nM) and PTPN11 (IC50 = 37 nM), suggesting that it would be a potential antidiabetic candidate. Furthermore, CA stimulated glucose uptake and resulted in increased AMP-activated protein kinase (AMPK) phosphorylation. Taken together, we demonstrated that CA increased glucose uptake as a dual inhibitor of PTPN9 and PTPN11 through activation of the AMPK signaling pathway. These results strongly suggest that CA could be used as a potential therapeutic candidate for the treatment of type 2 diabetes.

Keywords: Chebulinic acid; Glucose-uptake; PTPN11; PTPN9; Protein tyrosine phosphatases (PTPs); Type 2 diabetes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources