Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction
- PMID: 31285623
- DOI: 10.1038/s41592-019-0458-z
Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction
Abstract
Deep learning is becoming an increasingly important tool for image reconstruction in fluorescence microscopy. We review state-of-the-art applications such as image restoration and super-resolution imaging, and discuss how the latest deep learning research could be applied to other image reconstruction tasks. Despite its successes, deep learning also poses substantial challenges and has limits. We discuss key questions, including how to obtain training data, whether discovery of unknown structures is possible, and the danger of inferring unsubstantiated image details.
Similar articles
-
Deep Learning-Based Image Restoration and Super-Resolution for Fluorescence Microscopy: Overview and Resources.Methods Mol Biol. 2025;2904:21-50. doi: 10.1007/978-1-0716-4414-0_3. Methods Mol Biol. 2025. PMID: 40220224 Review.
-
Development of Deep-Learning-Based Single-Molecule Localization Image Analysis.Int J Mol Sci. 2022 Jun 21;23(13):6896. doi: 10.3390/ijms23136896. Int J Mol Sci. 2022. PMID: 35805897 Free PMC article. Review.
-
A survey on applications of deep learning in microscopy image analysis.Comput Biol Med. 2021 Jul;134:104523. doi: 10.1016/j.compbiomed.2021.104523. Epub 2021 May 29. Comput Biol Med. 2021. PMID: 34091383 Review.
-
Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging.Radiol Phys Technol. 2019 Sep;12(3):235-248. doi: 10.1007/s12194-019-00520-y. Epub 2019 Jun 20. Radiol Phys Technol. 2019. PMID: 31222562 Review.
-
MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model.Med Phys. 2019 Sep;46(9):4148-4164. doi: 10.1002/mp.13717. Epub 2019 Aug 7. Med Phys. 2019. PMID: 31309585
Cited by
-
Advances in Portable Optical Microscopy Using Cloud Technologies and Artificial Intelligence for Medical Applications.Sensors (Basel). 2024 Oct 17;24(20):6682. doi: 10.3390/s24206682. Sensors (Basel). 2024. PMID: 39460161 Free PMC article. Review.
-
A Machine Learning Workflow of Multiplexed Immunofluorescence Images to Interrogate Activator and Tolerogenic Profiles of Conventional Type 1 Dendritic Cells Infiltrating Melanomas of Disease-Free and Metastatic Patients.J Oncol. 2022 Oct 12;2022:9775736. doi: 10.1155/2022/9775736. eCollection 2022. J Oncol. 2022. PMID: 36276271 Free PMC article.
-
A deep learning method that identifies cellular heterogeneity using nanoscale nuclear features.Nat Mach Intell. 2024;6(9):1021-1033. doi: 10.1038/s42256-024-00883-x. Epub 2024 Aug 27. Nat Mach Intell. 2024. PMID: 39309215 Free PMC article.
-
Restoration of Two-Photon Ca2+ Imaging Data Through Model Blind Spatiotemporal Filtering.Front Neurosci. 2021 Apr 16;15:630250. doi: 10.3389/fnins.2021.630250. eCollection 2021. Front Neurosci. 2021. PMID: 33935628 Free PMC article.
-
Θ-Net: A Deep Neural Network Architecture for the Resolution Enhancement of Phase-Modulated Optical Micrographs In Silico.Sensors (Basel). 2024 Sep 26;24(19):6248. doi: 10.3390/s24196248. Sensors (Basel). 2024. PMID: 39409287 Free PMC article.
References
-
- Lichtman, J. W. & Conchello, J.-A. Fluorescence microscopy. Nat. Methods 2, 910–919 (2005). - PubMed
-
- Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).
-
- Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019). - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
