Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 6;53(15):9081-9090.
doi: 10.1021/acs.est.9b02170. Epub 2019 Jul 22.

Highly Efficient Utilization of Nano-Fe(0) Embedded in Mesoporous Carbon for Activation of Peroxydisulfate

Affiliations

Highly Efficient Utilization of Nano-Fe(0) Embedded in Mesoporous Carbon for Activation of Peroxydisulfate

Yunwen Wu et al. Environ Sci Technol. .

Abstract

Nanoscale zerovalent iron (nZVI) particles have received much attention in environmental science and technology due to their unique electronic and chemical properties. However, the aggregation and oxidation of nZVI brings much difficulty in practical application of environmental remediation. In this study, we reported a composite nano-Fe(0)/mesoporous carbon by a chelation-assisted coassembly and carbothermal reduction strategy. Nano-Fe(0) particles with surface iron oxide (Fe2O3·FeO) were wrapped with graphitic layers which were uniformly dispersed in mesoporous carbon frameworks. The unique structure made the nano-Fe(0) particles stable in air for more than 20 days. It was used as a peroxydisulfate (PDS) activator for the oxidation treatment of 2,4,6-trichlorophenol (TCP). The TOF value of MCFe for TCP degradation is nearly 3 times higher than those of FeSO4 and Fe2O3·FeO and nearly 2 times than that of commercial nZVI. The reactive oxygen species (ROS) including •SO4-, HO•, and •O2-, 1O2 are efficiently generated by PDS activation with MCFe. The PDS activation process by nano-Fe(0) particles was intrinsically induced by the ferrous ions (Fe(II)) continuously generated at the solid/aqueous interface. Namely, the nano-Fe(0) particles were highly efficiently utilized in sulfate radical-based advanced oxidation processes (SR-AOP). The porous structure also assists the absorption and transfer of TCP during the degradation process.

PubMed Disclaimer

LinkOut - more resources