Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 9;28(2):342-351.e4.
doi: 10.1016/j.celrep.2019.06.041.

Molecular Mechanisms Driving Switch Behavior in Xylem Cell Differentiation

Affiliations
Free article

Molecular Mechanisms Driving Switch Behavior in Xylem Cell Differentiation

Gina M Turco et al. Cell Rep. .
Free article

Abstract

Plant xylem cells conduct water and mineral nutrients. Although most plant cells are totipotent, xylem cells are unusual and undergo terminal differentiation. Many genes regulating this process are well characterized, including the Vascular-related NAC Domain 7 (VND7), MYB46, and MYB83 transcription factors, which are proposed to act in interconnected feedforward loops (FFLs). Less is known regarding the molecular mechanisms underlying the terminal transition to xylem cell differentiation. Here, we generate whole-root and single-cell data, which demonstrate that VND7 initiates sharp switching of root cells to xylem cell identity. Based on these data, we identified 4 candidate VND7 downstream target genes capable of generating this switch. Although MYB46 responds to VND7 induction, it is not among these targets. This system provides an important model to study the emergent properties that may give rise to totipotency relative to terminal differentiation and reveals xylem cell subtypes.

Keywords: differentiation; single cell; switch; totipotent; xylem.

PubMed Disclaimer

Publication types