Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 1:137:104988.
doi: 10.1016/j.ejps.2019.104988. Epub 2019 Jul 7.

Piperine-loaded nanoparticles with enhanced dissolution and oral bioavailability for epilepsy control

Affiliations

Piperine-loaded nanoparticles with enhanced dissolution and oral bioavailability for epilepsy control

Tianjing Ren et al. Eur J Pharm Sci. .

Abstract

Piperine, an alkaloid from black pepper, has demonstrated beneficial effects in central nervous system, especially in epilepsy control. However, its therapeutic application remains limited due to the low aqueous solubility of piperine. Thus, the present study aimed to formulate piperine into a more solubilized form to enhance its oral bioavailability and facilitate its development as a potential anti-epileptic treatment. The nanoprecipitation method was applied to prepare piperine nanoparticles, which were then examined under transmission electron microscopy. A spherical nanosized particle was obtained with small particle size (average particle size 130.20 ± 1.57 nm), narrow size distribution (polydispersity index 0.195 ± 0.002) and efficient entrapment (entrapment efficiency 92.2 ± 2.5%). Compared with the unformulated piperine, nanosized piperine had a much faster dissolution rate with 3 times higher accumulated drug release after 24 h. After oral administration at 3.5 mg/kg in rats, the nanosized piperine formulations could improve its oral bioavailability by 2.7-fold with 16 times higher concentrations in brain at 10 h postdosing. Moreover, the piperine nanoparticles exhibited effective protection against pentylenetetrazol-induced seizures in both zebrafish and mice. In summary, the present study provided a simple formulation strategy for oral administration of piperine to overcome its limitation in water solubility. The developed formulations could effectively enhance oral bioavailability of piperine with promising anti-epileptic effect, which could be applied as a potential therapy in epilepsy control.

Keywords: Anti-epilepsy; Bioavailability; Dissolution; Nanoparticles; Piperine.

PubMed Disclaimer

MeSH terms