Designing minimal and scalable insect-inspired multi-locomotion millirobots
- PMID: 31292552
- DOI: 10.1038/s41586-019-1388-8
Designing minimal and scalable insect-inspired multi-locomotion millirobots
Abstract
In ant colonies, collectivity enables division of labour and resources1-3 with great scalability. Beyond their intricate social behaviours, individuals of the genus Odontomachus4, also known as trap-jaw ants, have developed remarkable multi-locomotion mechanisms to 'escape-jump' upwards when threatened, using the sudden snapping of their mandibles5, and to negotiate obstacles by leaping forwards using their legs6. Emulating such diverse insect biomechanics and studying collective behaviours in a variety of environments may lead to the development of multi-locomotion robotic collectives deployable in situations such as emergency relief, exploration and monitoring7; however, reproducing these abilities in small-scale robotic systems with simple design and scalability remains a key challenge. Existing robotic collectives8-12 are confined to two-dimensional surfaces owing to limited locomotion, and individual multi-locomotion robots13-17 are difficult to scale up to large groups owing to the increased complexity, size and cost of hardware designs, which hinder mass production. Here we demonstrate an autonomous multi-locomotion insect-scale robot (millirobot) inspired by trap-jaw ants that addresses the design and scalability challenges of small-scale terrestrial robots. The robot's compact locomotion mechanism is constructed with minimal components and assembly steps, has tunable power requirements, and realizes five distinct gaits: vertical jumping for height, horizontal jumping for distance, somersault jumping to clear obstacles, walking on textured terrain and crawling on flat surfaces. The untethered, battery-powered millirobot can selectively switch gaits to traverse diverse terrain types, and groups of millirobots can operate collectively to manipulate objects and overcome obstacles. We constructed the ten-gram palm-sized prototype-the smallest and lightest self-contained multi-locomotion robot reported so far-by folding a quasi-two-dimensional metamaterial18 sandwich formed of easily integrated mechanical, material and electronic layers, which will enable assembly-free mass-manufacturing of robots with high task efficiency, flexibility and disposability.
References
-
- Heyman, Y., Shental, N., Brandis, A., Hefetz, A. & Feinerman, O. Ants regulate colony spatial organization using multiple chemical road-signs. Nat. Commun. 8, 15414 (2017). - DOI
-
- Gordon, D. M. The ecology of collective behavior. PLoS Biol. 12, e1001805 (2014). - DOI
-
- Franks, N. R. & Richardson, T. Teaching in tandem-running ants. Nature 439, 153 (2006). - DOI
-
- Sorger, D. M. & Zettel, H. On the ants (Hymenoptera: Formicidae) of the Philippine Islands: V. The genus Odontomachus Latreille, 1804. Myrmecol. News 14, 141–163 (2011).
-
- Patek, S. N., Baio, J. E., Fisher, B. L. & Suarez, A. V. Multifunctionality and mechanical origins: ballistic jaw propulsion in trap-jaw ants. Proc. Natl Acad. Sci. USA 103, 12787–12792 (2006). - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
