Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jun 26;11(6):337-346.
doi: 10.4252/wjsc.v11.i6.337.

Effect of aging on behaviour of mesenchymal stem cells

Affiliations
Review

Effect of aging on behaviour of mesenchymal stem cells

Juan Antonio Fafián-Labora et al. World J Stem Cells. .

Abstract

Organs whose source is the mesoderm lineage contain a subpopulation of stem cells that are able to differentiate among mesodermal derivatives (chondrocytes, osteocytes, adipocytes). This subpopulation of adult stem cells, called "mesenchymal stem cells" or "mesenchymal stromal cells (MSCs)", contributes directly to the homeostatic maintenance of their organs; hence, their senescence could be very deleterious for human bodily functions. MSCs are easily isolated and amenable their expansion in vitro because of the research demanding to test them in many diverse clinical indications. All of these works are shown by the rapidly expanding literature that includes many in vivo animal models. We do not have an in-depth understanding of mechanisms that induce cellular senescence, and to further clarify the consequences of the senescence process in MSCs, some hints may be derived from the study of cellular behaviour in vivo and in vitro, autophagy, mitochondrial stress and exosomal activity. In this particular work, we decided to review these biological features in the literature on MSC senescence over the last three years.

Keywords: Aging; Autophagy; Extracellular vesicles; Mesenchymal stem cells; Mitochondrial stress.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: No potential conflicts of interest. No financial support.

Figures

Figure 1
Figure 1
Effect of aging on self-renewal, differentiation and immunogenic potential from mesenchymal stem cells. A, B: Stem cell properties of mesenchymal stem cells (MSCs) are limited by age donor (A), and their long-term in vitro culture (B); C: Some new agents can ameliorate the effect of cellular senescence on the therapeutic capacity of MSCs; D: Treatment with senolytic drugs affects the behaviour of MSCs. MSCs: Mesenchymal stem cells; LPA: Lysophosphatidic acid.
Figure 2
Figure 2
Autophagy influences senescence in mesenchymal stem cells. The self-renewal potential of young mesenchymal stem cells (MSCs) is influenced by their autophagy capacity to regulate the good levels of oncogenic factors like p53 and inflammatory signals like senescence-associated secretory phenotype and IGF-1, which produces overexpression of reactive oxygen species in the mitochondria, accumulation of mutations at DNA levels and acidification in the lisosomal apparatus together with an increase of LMNA in the nucleus. When autophagy is downregulated by the pathologic process, young MSCs become old MSCs in an accelerated way, losing their self-renewal capacity. MSC: Mesenchymal stem cell; ROS: Reactive oxygen species.

References

    1. Rando TA. Stem cells, ageing and the quest for immortality. Nature. 2006;441:1080–1086. - PubMed
    1. Stab BR 2nd, Martinez L, Grismaldo A, Lerma A, Gutiérrez ML, Barrera LA, Sutachan JJ, Albarracín SL. Mitochondrial Functional Changes Characterization in Young and Senescent Human Adipose Derived MSCs. Front Aging Neurosci. 2016;8:299. - PMC - PubMed
    1. Zhang M, Du Y, Lu R, Shu Y, Zhao W, Li Z, Zhang Y, Liu R, Yang T, Luo S, Gao M, Zhang Y, Zhang G, Liu J, Lu Y. Cholesterol Retards Senescence in Bone Marrow Mesenchymal Stem Cells by Modulating Autophagy and ROS/p53/p21 Cip1/Waf1 Pathway. Oxid Med Cell Longev. 2016;2016:7524308. - PMC - PubMed
    1. Lee JY, Yu KR, Lee BC, Kang I, Kim JJ, Jung EJ, Kim HS, Seo Y, Choi SW, Kang KS. GATA4-dependent regulation of the secretory phenotype via MCP-1 underlies lamin A-mediated human mesenchymal stem cell aging. Exp Mol Med. 2018;50:63. - PMC - PubMed
    1. Özcan S, Alessio N, Acar MB, Toprak G, Gönen ZB, Peluso G, Galderisi U. Myeloma cells can corrupt senescent mesenchymal stromal cells and impair their anti-tumor activity. Oncotarget. 2015;6:39482–39492. - PMC - PubMed