Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jul 10;20(14):3390.
doi: 10.3390/ijms20143390.

Platinum Salts in Patients with Breast Cancer: A Focus on Predictive Factors

Affiliations
Review

Platinum Salts in Patients with Breast Cancer: A Focus on Predictive Factors

Mattia Garutti et al. Int J Mol Sci. .

Abstract

Breast cancer (BC) is the most frequent oncologic cause of death among women and the improvement of its treatments is compelling. Platinum salts (e.g., carboplatin, cisplatin, and oxaliplatin) are old drugs still used to treat BC, especially the triple-negative subgroup. However, only a subset of patients see a concrete benefit from these drugs, raising the question of how to select them properly. Therefore, predictive biomarkers for platinum salts in BC still represent an unmet clinical need. Here, we review clinical and preclinical works in order to summarize the current evidence about predictive or putative platinum salt biomarkers in BC. The association between BRCA1/2 gene mutations and platinum sensitivity has been largely described. However, beyond the mutations of these two genes, several other proteins belonging to the homologous recombination pathways have been linked to platinum response, defining the concept of BRCAness. Several works, here reviewed, have tried to capture BRCAness through different strategies, such as homologous recombination deficiency (HRD) score and genetic signatures. Moreover, p53 and its family members (p63 and p73) might also be used as predictors of platinum response. Finally, we describe the mounting preclinical evidence regarding base excision repair deficiency as a possible new platinum biomarker.

Keywords: BRCA; BRCAness; base excision repair; breast cancer; homologous recombination repair; platinum.

PubMed Disclaimer

Conflict of interest statement

Puglisi has received honoraria and advisory roles from Celgene, Eli Lilly, Ipsen, MSD, Novartis, Roche, Takeda; travel grants from Celgene, Roche, and Servier; research grants from AstraZeneca, EISAI, and Roche. Gerratana reports non-financial support from Menarini Silicon Biosystems (travel grants); honoraria from Elly Lilly; research grants from Eisai Co.; outside the submitted work. The other authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Representation of the main DNA repair pathways involved in platinum salts-induced DNA damage. SSBs are mainly repaired by the BER pathway, which needs proficient DNA glycosylases that recognize and cleave the damaged base. Then, APE1 removes the abasic site that can be sealed by Polβ and ligases. In the case of DSBs, HR plays a crucial role. The MRN complex recognizes the DSB and recruits ATM and ATR, which can eventually induce cell cycle arrest through p53. Subsequently, ATM can cause the recruitment of BRCA1, BRCA2, and PALB2 which determine the RAD51 loading and the subsequent DNA synthesis. BER: base excision repair; DBS: double-strand break; HR: homologous recombination repair; Pt: platinum salts; SSB: single-strand break.

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. - DOI - PubMed
    1. Waks A.G., Winer E.P. Breast Cancer Treatment. JAMA. 2019;321:288. doi: 10.1001/jama.2018.19323. - DOI - PubMed
    1. Rakha E.A., Green A.R. Molecular classification of breast cancer: What the pathologist needs to know. Pathology. 2017;49:111–119. doi: 10.1016/j.pathol.2016.10.012. - DOI - PubMed
    1. Johnstone T.C., Suntharalingam K., Lippard S.J. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem. Rev. 2016;116:3436–3486. doi: 10.1021/acs.chemrev.5b00597. - DOI - PMC - PubMed
    1. Gerratana L., Fanotto V., Pelizzari G., Agostinetto E., Puglisi F. Do platinum salts fit all triple negative breast cancers? Cancer Treat. Rev. 2016;48:34–41. doi: 10.1016/j.ctrv.2016.06.004. - DOI - PubMed

MeSH terms