Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 1:425:152244.
doi: 10.1016/j.tox.2019.152244. Epub 2019 Jul 11.

Pregnancy exposure to carbon black nanoparticles exacerbates bleomycin-induced lung fibrosis in offspring via disrupting LKB1-AMPK-ULK1 axis-mediated autophagy

Affiliations

Pregnancy exposure to carbon black nanoparticles exacerbates bleomycin-induced lung fibrosis in offspring via disrupting LKB1-AMPK-ULK1 axis-mediated autophagy

Longbin Zhang et al. Toxicology. .

Abstract

Accumulating evidence shows that carbon black nanoparticles (CBNPs) (one of the most used nanoparticles) can induce toxicity via induction of inflammation, oxidative stress and genotoxicity in vitro and in vivo, and epidemiological studies have indicated that the possible correlation between maternal immune activation and risk of developing neuropsychiatric disorder in the offspring. However, whether pregnancy exposure of CBNPs (Pr-CBNPs) enhances the susceptibility to bleomycin (BLM)-induced lung fibrosis in offspring is unknown. Herein, we demonstrated that Pr-CBNPs during gestational day 9-18 via intranasal administration could confer enhanced susceptibility to BLM-induced fibrotic response in offspring, including deteriorative lung pathologic changes and more collagen deposition. Intriguingly, we found that Pr-CBNPs repressed the activation of autophagy (an anti-fibrotic mechanism), which was moderately activated in offspring from mock group. Moreover, Pr-CBNPs was likely to disrupt the LKB1-AMPK-ULK1 axis (a key regulatory pathway for autophagy induction). In summary, this study provides the first evidence that pregnancy exposure to CBNPs can exacerbate BLM-induced lung fibrotic response in offspring probably through disruption of LKB1-AMPK-ULK1 axis-mediated autophagy.

Keywords: Autophagy; Carbon black nanoparticles; Lung fibrosis; Offspring; Pregnancy exposure.

PubMed Disclaimer

Publication types