Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct:253:19-28.
doi: 10.1016/j.envpol.2019.06.116. Epub 2019 Jul 5.

A combined chemical/size fractionation approach to study winter/summer variations, ageing and source strength of atmospheric particles

Affiliations

A combined chemical/size fractionation approach to study winter/summer variations, ageing and source strength of atmospheric particles

S Canepari et al. Environ Pollut. 2019 Oct.

Abstract

We studied the size distribution of ions (Cl-, NO3-, SO4=, Na+, NH4+, K+, Mg++, Ca++) and elements (As, Ba, Cd, Co, Cs, Cu, Fe, Li, Mn, Ni, Pb, Rb, Sb, Se, Sn, Sr, Ti, Tl, V, Zn) during the winter and summer seasons of seven consecutive years (2008-2014) in an area of the Po Valley (Northern Italy) characterised by industrial, agricultural and urban settings. The study included the collection and analysis of 41 series of size-segregated samples (MOUDI sampler, 10 stages, cut sizes from 0.18 to 18 μm). Ions were analysed by ion chromatography; elemental analysis was carried out by ICP-MS, by applying a chemical fractionation method able to increase the selectivity of PM source tracers. Our results indicate that important winter/summer variations occurred in both the concentration and size distribution of most PM components. These variations were explained in terms of variations in the strength of the prevailing sources of each component. The contribution of biomass burning for domestic heating was highlighted by the well-known tracer K+ but also by the soluble fraction of Rb, Cs and Li. Biomass burning contribution to atmospheric PM was mostly contained in the fine fraction, with a broad size-distribution from 0.18 to 1.8 μm. This source also appreciably increased the concentration of other elements in fine PM (As, Cd, Co, Mn, Pb, Sb, Sn). A few PM components (tracers of sea-spray, brake lining and some industries) did not show marked seasonal variations in concentration and size distribution. However, during winter, for brake lining and industry tracers we observed an upward shift in the dimension of fine particles and a downward shift in the dimension of coarse particles, due to the ageing of the air masses.

Keywords: Biomass burning; Elemental composition; MOUDI impactor; Size distribution; Source tracers.

PubMed Disclaimer

LinkOut - more resources