Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by Botrytis cinerea
- PMID: 31304217
- PMCID: PMC6603817
- DOI: 10.1016/j.dib.2019.104150
Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by Botrytis cinerea
Abstract
Noble rot is a latent infection of grape berries caused by the necrotrophic fungus Botrytis cinerea, which develops under specific climatic conditions. The infected berries undergo biochemical and metabolic changes, associated with a rapid withering, which altogether offer interesting organoleptic features to sweet white wines. In this paper, we provide RNAseq datasets (raw and normalized counts as well as differentially expressed genes lists) of the transcriptome profiles of both grapevine berries (Vitis vinifera cv. Garganega) and B. cinerea during the establishment of noble rot, artificially induced in controlled conditions. The sequencing data are available in the NCBI GEO database under accession number GSE116741. These data were exploited in a comprehensive meta-analysis of gene expression during noble rot infection, gray mold and post-harvest withering. This highlighted an important common transcriptional reprogramming in different botrytized grape berry varieties and led to the identification of key genes specifically modulated during noble rot infection, which are described in the article entitled "Specific molecular interactions between Vitis vinifera and Botrytis cinerea are required for noble rot development in grape berries" Lovato et al., 2019.
Keywords: Botrytis cinerea; Grapevine berries; Noble rot; RNA-Seq; Transcriptomic; Vitis vinifera.
Figures


Similar articles
-
The Induction of Noble Rot (Botrytis cinerea) Infection during Postharvest Withering Changes the Metabolome of Grapevine Berries (Vitis vinifera L., cv. Garganega).Front Plant Sci. 2017 Jun 21;8:1002. doi: 10.3389/fpls.2017.01002. eCollection 2017. Front Plant Sci. 2017. PMID: 28680428 Free PMC article.
-
Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot.Plant Physiol. 2015 Dec;169(4):2422-43. doi: 10.1104/pp.15.00852. Epub 2015 Oct 8. Plant Physiol. 2015. PMID: 26450706 Free PMC article.
-
Botrytis cinerea causes different plant responses in grape (Vitis vinifera) berries during noble and grey rot: diverse metabolism versus simple defence.Front Plant Sci. 2024 Aug 6;15:1433161. doi: 10.3389/fpls.2024.1433161. eCollection 2024. Front Plant Sci. 2024. PMID: 39166245 Free PMC article.
-
Botrytized wines.Adv Food Nutr Res. 2011;63:147-206. doi: 10.1016/B978-0-12-384927-4.00006-3. Adv Food Nutr Res. 2011. PMID: 21867895 Review.
-
Rotting Grapes Don't Improve with Age: Cluster Rot Disease Complexes, Management, and Future Prospects.Plant Dis. 2022 Aug;106(8):2013-2025. doi: 10.1094/PDIS-04-21-0695-FE. Epub 2022 Jul 14. Plant Dis. 2022. PMID: 35108071 Review.
Cited by
-
Modifications of Grapevine Berry Composition Induced by Main Viral and Fungal Pathogens in a Climate Change Scenario.Front Plant Sci. 2021 Dec 8;12:717223. doi: 10.3389/fpls.2021.717223. eCollection 2021. Front Plant Sci. 2021. PMID: 34956249 Free PMC article. Review.
-
PRGdb 4.0: an updated database dedicated to genes involved in plant disease resistance process.Nucleic Acids Res. 2022 Jan 7;50(D1):D1483-D1490. doi: 10.1093/nar/gkab1087. Nucleic Acids Res. 2022. PMID: 34850118 Free PMC article.
-
Insights into the cell-wall dynamics in grapevine berries during ripening and in response to biotic and abiotic stresses.Plant Mol Biol. 2024 Apr 11;114(3):38. doi: 10.1007/s11103-024-01437-w. Plant Mol Biol. 2024. PMID: 38605193 Free PMC article. Review.
References
-
- Lovato A., Zenoni S., Tornielli G.B., Colombo T., Vandelle E., Polverari T. Specific molecular interactions between vitis vinifera and botrytis cinerea are required for noble rot development in grape berries. Postharvest. Biol. Technol. 2019;156:110924. doi: 10.1016/j.postharvbio.2019.05.025. - DOI
-
- Quidde T., Büttner P., Tudzynski P. Evidence for three different specific saponin-detoxifying activities in Botrytis cinerea and cloning of a gene coding for a putative avenacinase. Eur. J. Plant Pathol. 1999;105:273–283. doi: 10.1023/A:1008796006051. - DOI
-
- Amselem J., Cuomo C.A., Van Kan J.A.L., Viaud M., Benito E.P., Couloux A., Coutinho P.M., de Vries R.P., Dyer P.S., Fillinger S., Fournier E., Gout L., Hahn M., Kohn L., Lapalu N., Plummer K.M., Pradier J.-M., Quévillon E., Sharon A., Simon A., ten Have A., Tudzynski B., Tudzynski P., Wincker P., Andrew M., Anthouard V., Beever R.E., Beffa R., Benoit I., Bouzid O., Brault B., Chen Z., Choquer M., Collémare J., Cotton P., Danchin E.G., Da Silva C., Gautier A., Giraud C., Giraud T., Gonzalez C., Grossetete S., Güldener U., Henrissat B., Howlett B.J., Kodira C., Kretschmer M., Lappartient A., Leroch M., Levis C., Mauceli E., Neuvéglise C., Oeser B., Pearson M., Poulain J., Poussereau N., Quesneville H., Rascle C., Schumacher J., Ségurens B., Sexton A., Silva E., Sirven C., Soanes D.M., Talbot N.J., Templeton M., Yandava C., Yarden O., Zeng Q., Rollins J.A., Lebrun M.-H., Dickman M. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 2011;7 doi: 10.1371/journal.pgen.1002230. e1002230. - DOI - PMC - PubMed
-
- Van Kan J.A.L., Stasse J.H.M., Mosbach A., Van Der Lee T.A.J., Faino L., Farmer A.D., Papasotiriou D.G., Zhou S., Seidl M.F., Cottam E., Edel D., Hahn M., Schartz D.C., Dietrich R.A., Widdison S., Scalliet G. A gapless genome sequence of the fungus Botrytis cinerea. Mol. Plant Pathol. 2017;18:75–89. doi: 10.1111/mpp.12384. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
Molecular Biology Databases