Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 13:25:104150.
doi: 10.1016/j.dib.2019.104150. eCollection 2019 Aug.

Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by Botrytis cinerea

Affiliations

Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by Botrytis cinerea

Arianna Lovato et al. Data Brief. .

Abstract

Noble rot is a latent infection of grape berries caused by the necrotrophic fungus Botrytis cinerea, which develops under specific climatic conditions. The infected berries undergo biochemical and metabolic changes, associated with a rapid withering, which altogether offer interesting organoleptic features to sweet white wines. In this paper, we provide RNAseq datasets (raw and normalized counts as well as differentially expressed genes lists) of the transcriptome profiles of both grapevine berries (Vitis vinifera cv. Garganega) and B. cinerea during the establishment of noble rot, artificially induced in controlled conditions. The sequencing data are available in the NCBI GEO database under accession number GSE116741. These data were exploited in a comprehensive meta-analysis of gene expression during noble rot infection, gray mold and post-harvest withering. This highlighted an important common transcriptional reprogramming in different botrytized grape berry varieties and led to the identification of key genes specifically modulated during noble rot infection, which are described in the article entitled "Specific molecular interactions between Vitis vinifera and Botrytis cinerea are required for noble rot development in grape berries" Lovato et al., 2019.

Keywords: Botrytis cinerea; Grapevine berries; Noble rot; RNA-Seq; Transcriptomic; Vitis vinifera.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Unsupervised clustering of samples based on V. vinifera cv. Garganega normalized gene counts. Infected.Garganega.berries, grape berries artificially infected in vitro with B. cinerea; Control.Garganega.berries, grape berries water-infiltrated. Numbers 1 to 3 refer to biological replicates.
Fig. 2
Fig. 2
Unsupervised clustering of samples based on B. cinerea normalized gene counts. B.cinerea.in.vitro, B. cinerea mycelium grown in vitro on synthetic medium; infected.Garganega.berries, grape berries artificially infected in vitro with B. cinerea. Numbers 1 to 3 refer to biological replicates.

Similar articles

Cited by

References

    1. Lovato A., Zenoni S., Tornielli G.B., Colombo T., Vandelle E., Polverari T. Specific molecular interactions between vitis vinifera and botrytis cinerea are required for noble rot development in grape berries. Postharvest. Biol. Technol. 2019;156:110924. doi: 10.1016/j.postharvbio.2019.05.025. - DOI
    1. Quidde T., Büttner P., Tudzynski P. Evidence for three different specific saponin-detoxifying activities in Botrytis cinerea and cloning of a gene coding for a putative avenacinase. Eur. J. Plant Pathol. 1999;105:273–283. doi: 10.1023/A:1008796006051. - DOI
    1. Amselem J., Cuomo C.A., Van Kan J.A.L., Viaud M., Benito E.P., Couloux A., Coutinho P.M., de Vries R.P., Dyer P.S., Fillinger S., Fournier E., Gout L., Hahn M., Kohn L., Lapalu N., Plummer K.M., Pradier J.-M., Quévillon E., Sharon A., Simon A., ten Have A., Tudzynski B., Tudzynski P., Wincker P., Andrew M., Anthouard V., Beever R.E., Beffa R., Benoit I., Bouzid O., Brault B., Chen Z., Choquer M., Collémare J., Cotton P., Danchin E.G., Da Silva C., Gautier A., Giraud C., Giraud T., Gonzalez C., Grossetete S., Güldener U., Henrissat B., Howlett B.J., Kodira C., Kretschmer M., Lappartient A., Leroch M., Levis C., Mauceli E., Neuvéglise C., Oeser B., Pearson M., Poulain J., Poussereau N., Quesneville H., Rascle C., Schumacher J., Ségurens B., Sexton A., Silva E., Sirven C., Soanes D.M., Talbot N.J., Templeton M., Yandava C., Yarden O., Zeng Q., Rollins J.A., Lebrun M.-H., Dickman M. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 2011;7 doi: 10.1371/journal.pgen.1002230. e1002230. - DOI - PMC - PubMed
    1. Van Kan J.A.L., Stasse J.H.M., Mosbach A., Van Der Lee T.A.J., Faino L., Farmer A.D., Papasotiriou D.G., Zhou S., Seidl M.F., Cottam E., Edel D., Hahn M., Schartz D.C., Dietrich R.A., Widdison S., Scalliet G. A gapless genome sequence of the fungus Botrytis cinerea. Mol. Plant Pathol. 2017;18:75–89. doi: 10.1111/mpp.12384. - DOI - PMC - PubMed
    1. Patel R.K., Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One. 2012;7 doi: 10.1371/journal.pone.0030619. e30619. - DOI - PMC - PubMed