Polymer-Assisted Metal Deposition (PAMD) for Flexible and Wearable Electronics: Principle, Materials, Printing, and Devices
- PMID: 31304644
- DOI: 10.1002/adma.201902987
Polymer-Assisted Metal Deposition (PAMD) for Flexible and Wearable Electronics: Principle, Materials, Printing, and Devices
Abstract
The rapid development of flexible and wearable electronics favors low-cost, solution-processing, and high-throughput techniques for fabricating metal contacts, interconnects, and electrodes on flexible substrates of different natures. Conventional top-down printing strategies with metal-nanoparticle-formulated inks based on the thermal sintering mechanism often suffer from overheating, rough film surface, low adhesion, and poor metal quality, which are not desirable for most flexible electronic applications. In recent years, a bottom-up strategy termed as polymer-assisted metal deposition (PAMD) shows great promise in addressing the abovementioned challenges. Here, a detailed review of the development of PAMD in the past decade is provided, covering the fundamental chemical mechanism, the preparation of various soft and conductive metallic materials, the compatibility to different printing technologies, and the applications for a wide variety of flexible and wearable electronic devices. Finally, the attributes of PAMD in comparison with conventional nanoparticle strategies are summarized and future technological and application potentials are elaborated.
Keywords: electrodes; electroless deposition; flexible and wearable electronics; polymer-assisted metal deposition; printing.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Polymer-assisted metal deposition (PAMD): a full-solution strategy for flexible, stretchable, compressible, and wearable metal conductors.Adv Mater. 2014 Aug 20;26(31):5508-16. doi: 10.1002/adma.201305558. Epub 2014 Jan 23. Adv Mater. 2014. PMID: 24458846 Review.
-
Flexible Electronics toward Wearable Sensing.Acc Chem Res. 2019 Mar 19;52(3):523-533. doi: 10.1021/acs.accounts.8b00500. Epub 2019 Feb 15. Acc Chem Res. 2019. PMID: 30767497 Review.
-
UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.ACS Appl Mater Interfaces. 2019 Jul 31;11(30):27318-27326. doi: 10.1021/acsami.9b06432. Epub 2019 Jul 22. ACS Appl Mater Interfaces. 2019. PMID: 31284718
-
Photoreactive and Metal-Platable Copolymer Inks for High-Throughput, Room-Temperature Printing of Flexible Metal Electrodes for Thin-Film Electronics.Adv Mater. 2016 Jun;28(24):4926-34. doi: 10.1002/adma.201505119. Epub 2016 Apr 13. Adv Mater. 2016. PMID: 27074139
-
Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications.Adv Mater. 2020 Feb;32(5):e1902532. doi: 10.1002/adma.201902532. Epub 2019 Sep 9. Adv Mater. 2020. PMID: 31495991 Review.
Cited by
-
Room-Temperature Annealing-Free Gold Printing via Anion-Assisted Photochemical Deposition.Adv Mater. 2022 Aug;34(32):e2201772. doi: 10.1002/adma.202201772. Epub 2022 Jul 1. Adv Mater. 2022. PMID: 35703311 Free PMC article.
-
E-Textile by Printing an All-through Penetrating Copper Complex Ink.ACS Appl Mater Interfaces. 2023 May 3;15(17):21651-21658. doi: 10.1021/acsami.3c02242. Epub 2023 Apr 19. ACS Appl Mater Interfaces. 2023. PMID: 37075249 Free PMC article.
-
Flexible Conducting Composite Film with Reversible In-Plane Folding-Unfolding Property.Adv Sci (Weinh). 2021 Oct;8(20):e2102314. doi: 10.1002/advs.202102314. Epub 2021 Aug 13. Adv Sci (Weinh). 2021. PMID: 34390231 Free PMC article.
-
Ultraelastic Yarns from Curcumin-Assisted ELD toward Wearable Human-Machine Interface Textiles.Adv Sci (Weinh). 2020 Nov 3;7(23):2002009. doi: 10.1002/advs.202002009. eCollection 2020 Dec. Adv Sci (Weinh). 2020. PMID: 33304755 Free PMC article.
-
Well-defined in-textile photolithography towards permeable textile electronics.Nat Commun. 2024 Jan 30;15(1):887. doi: 10.1038/s41467-024-45287-y. Nat Commun. 2024. PMID: 38291087 Free PMC article.
References
-
- D.-H. Kim, J. A. Rogers, Adv. Mater. 2008, 20, 4887.
-
- T. Someya, Stretchable Electronics, Wiley-VCH, Weinheim, Germany 2012.
-
- S. Wang, J. Y. Oh, J. Xu, H. Tran, Z. Bao, Acc. Chem. Res. 2018, 51, 1033.
-
- T. Cheng, Y. Zhang, W.-Y. Lai, W. Huang, Adv. Mater. 2015, 27, 3349.
-
- M. S. White, M. Kaltenbrunner, E. D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D. A. M. Egbe, M. C. Miron, Z. Major, M. C. Scharber, T. Sekitani, T. Someya, S. Bauer, N. S. Sariciftci, Nat. Photonics 2013, 7, 811.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous