A Review of Machine Learning Techniques for Keratoconus Detection and Refractive Surgery Screening
- PMID: 31304857
- DOI: 10.1080/08820538.2019.1620812
A Review of Machine Learning Techniques for Keratoconus Detection and Refractive Surgery Screening
Abstract
Various machine learning techniques have been developed for keratoconus detection and refractive surgery screening. These techniques utilize inputs from a range of corneal imaging devices and are built with automated decision trees, support vector machines, and various types of neural networks. In general, these techniques demonstrate very good differentiation of normal and keratoconic eyes, as well as good differentiation of normal and form fruste keratoconus. However, it is difficult to directly compare these studies, as keratoconus represents a wide spectrum of disease. More importantly, no public dataset exists for research purposes. Despite these challenges, machine learning in keratoconus detection and refractive surgery screening is a burgeoning field of study, with significant potential for continued advancement as imaging devices and techniques become more sophisticated.
Keywords: Machine learning; artificial intelligence; corneal ectasia; keratoconus; refractive surgery screening.
Similar articles
-
[Advance of screening keratoconus before refractive surgery with machine learning].Zhonghua Yan Ke Za Zhi. 2021 Oct 11;57(10):796-800. doi: 10.3760/cma.j.cn112142-20210225-00097. Zhonghua Yan Ke Za Zhi. 2021. PMID: 34619953 Chinese.
-
Detection of subclinical keratoconus using an automated decision tree classification.Am J Ophthalmol. 2013 Aug;156(2):237-246.e1. doi: 10.1016/j.ajo.2013.03.034. Epub 2013 Jun 7. Am J Ophthalmol. 2013. PMID: 23746611
-
Screening Candidates for Refractive Surgery With Corneal Tomographic-Based Deep Learning.JAMA Ophthalmol. 2020 May 1;138(5):519-526. doi: 10.1001/jamaophthalmol.2020.0507. JAMA Ophthalmol. 2020. PMID: 32215587 Free PMC article.
-
Keratoconus Diagnosis: From Fundamentals to Artificial Intelligence: A Systematic Narrative Review.Diagnostics (Basel). 2023 Aug 21;13(16):2715. doi: 10.3390/diagnostics13162715. Diagnostics (Basel). 2023. PMID: 37627975 Free PMC article. Review.
-
[Detection of early forms of keratoconus - current screening methods].Klin Monbl Augenheilkd. 2013 Oct;230(10):998-1004. doi: 10.1055/s-0032-1328694. Epub 2013 Jul 10. Klin Monbl Augenheilkd. 2013. PMID: 23842872 Review. German.
Cited by
-
Patterns in refractive error and treatment delay in keratoconus-An Australian study.PLoS One. 2024 Jan 11;19(1):e0297268. doi: 10.1371/journal.pone.0297268. eCollection 2024. PLoS One. 2024. PMID: 38206955 Free PMC article.
-
Machine Learning Algorithms to Detect Subclinical Keratoconus: Systematic Review.JMIR Med Inform. 2021 Dec 13;9(12):e27363. doi: 10.2196/27363. JMIR Med Inform. 2021. PMID: 34898463 Free PMC article. Review.
-
[Keratoconus detection and classification from parameters of the Corvis®ST : A study based on algorithms of machine learning].Ophthalmologe. 2021 Jul;118(7):697-706. doi: 10.1007/s00347-020-01231-1. Epub 2020 Sep 24. Ophthalmologe. 2021. PMID: 32970190 Free PMC article. German.
-
Artificial intelligence for detecting keratoconus.Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2. Cochrane Database Syst Rev. 2023. PMID: 37965960 Free PMC article.
-
Strategies for Early Keratoconus Diagnosis: A Narrative Review of Evaluating Affordable and Effective Detection Techniques.J Clin Med. 2025 Jan 13;14(2):460. doi: 10.3390/jcm14020460. J Clin Med. 2025. PMID: 39860468 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources