Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Oct;1(2):109-15.
doi: 10.1002/prot.340010202.

Protein fluorescence quenching by small molecules: protein penetration versus solvent exposure

Affiliations

Protein fluorescence quenching by small molecules: protein penetration versus solvent exposure

D B Calhoun et al. Proteins. 1986 Oct.

Abstract

Experiments were done to test the thesis that acrylamide and similar small molecules can penetrate into proteins on a nanosecond time scale. The approach taken was to measure the pattern of fluorescence quenching exhibited by quenching molecules differing in molecular character (size, polarity, charge) when these are directed against protein tryptophans that cover the whole range of tryptophan accessibility. If quenching involves protein penetration and internal quencher migration, one expects that larger quenchers and more polar quenchers should display lesser quenching. In fact, no significant dependence on quencher character was found. For proteins that display measurable quenching, the disparate quenchers studied display very similar quenching rate constants when directed against any particular protein tryptophan. For several proteins having tryptophans known to be buried, no quenching occurs. These results are not consistent with the view that the kinds of small molecules studied can quite generally penetrate into and diffuse about within proteins at near-diffusion-limited rates. Rather the results suggest that when quenching is observed, the pathway involves encounters with tryptophans that are partially exposed at the protein surface. Available crystallographic results support this conclusion.

PubMed Disclaimer

Publication types

LinkOut - more resources