Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019:161:45-71.
doi: 10.1016/B978-0-444-64142-7.00040-0.

Presurgical intracranial investigations in epilepsy surgery

Affiliations
Review

Presurgical intracranial investigations in epilepsy surgery

Patrick Chauvel et al. Handb Clin Neurol. 2019.

Abstract

Identification and localization of the "epileptogenic process" in the brain of patients with drug-resistant epilepsy for surgical cure is the goal of presurgical investigations. Intracranial recordings are required when conflicting data between seizure clinical semiology and EEG prevent precise localization within one hemisphere or lateralization, when a visible lesion on MRI seems unrelated to the electroclinical data, or in MRI-negative cases. Two methods are currently used. The objective of the subdural grid electrocorticography with or without depth electrodes (SDG/DE) is the best possible identification of the area of onset of spontaneous seizures and localization of the eloquent cortex. The objective of stereoelectroencephalography (SEEG) is to define the epileptogenic zone (configured as a network) and its relation to an unmasked lesion. Two-dimensional (SDG) and three-dimensional (SEEG) brain sampling dictate different strategies for noninvasive presurgical phase I goals as well as for data analysis. SEEG must resolve several potential localization hypotheses in a manner that cannot be achieved with SDG. SDG operates through brain surface coverage, unlike SEEG, which samples networks. SDG estimates the extent of cortical resection through a lobar or sublobar localization of ictal onset and constraints from functional mapping. SEEG defines a tailored resection according to the results of anatomo-electro-clinical correlations in stereotaxic space that will guide the ablation of the epileptogenic zone. SEEG is currently expanding faster than SDG. The prerequisites (especially in the preimplantation hypothetical strategy) and technical tools (especially stimulation and functional mapping) in the two methods are very different. This chapter presents a comparative review of the rationale, indications, electrode implantation strategies, interpretation, and surgical decision making of these two approaches of presurgical evaluation for epilepsy surgery.

Keywords: Electrocorticography; Epilepsy; Epilepsy surgery; Epileptogenic zone; SEEG; Subdural electrodes.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources