Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr;34(4):1736-1744.
doi: 10.1007/s00464-019-06959-9. Epub 2019 Jul 15.

HYPerspectral Enhanced Reality (HYPER): a physiology-based surgical guidance tool

Affiliations

HYPerspectral Enhanced Reality (HYPER): a physiology-based surgical guidance tool

Manuel Barberio et al. Surg Endosc. 2020 Apr.

Abstract

Background: HSI is an optical technology allowing for a real-time, contrast-free snapshot of physiological tissue properties, including oxygenation. Hyperspectral imaging (HSI) has the potential to quantify the gastrointestinal perfusion intraoperatively. This experimental study evaluates the accuracy of HSI, in order to quantify bowel perfusion, and to obtain a superposition of the hyperspectral information onto real-time images.

Methods: In 6 pigs, 4 ischemic bowel loops were created (A, B, C, D) and imaged at set time points (from 5 to 360 min). A commercially available HSI system provided pseudo-color maps of the perfusion status (StO2, Near-InfraRed perfusion) and the tissue water index. An ad hoc software was developed to superimpose HSI information onto the live video, creating the HYPerspectral-based Enhanced Reality (HYPER). Seven regions of interest (ROIs) were identified in each bowel loop according to StO2 ranges, i.e., vascular (VASC proximal and distal), marginal vascular (MV proximal and distal), marginal ischemic (MI proximal and distal), and ischemic (ISCH). Local capillary lactates (LCL), reactive oxygen species (ROS), and histopathology were measured at the ROIs. A machine-learning-based prediction algorithm of LCL, based on the HSI-StO2%, was trained in the 6 pigs and tested on 5 additional animals.

Results: HSI parameters (StO2 and NIR) were congruent with LCL levels, ROS production, and histopathology damage scores at the ROIs discriminated by HYPER. The global mean error of LCL prediction was 1.18 ± 1.35 mmol/L. For StO2 values > 30%, the mean error was 0.3 ± 0.33.

Conclusions: HYPER imaging could precisely quantify the overtime perfusion changes in this bowel ischemia model.

Keywords: Enhanced reality; Hyperspectral imaging; Image-guided surgery; Intraoperative bowel perfusion assessment.

PubMed Disclaimer

References

    1. Campbell C, Reames MK, Robinson M, Symanowski J, Salo JC (2015) Conduit vascular evaluation is associated with reduction in anastomotic leak after esophagectomy. J Gastrointest Surg 19:806–812 - DOI
    1. Karliczek A, Benaron DA, Baas PC, Zeebregts CJ, Wiggers T, van Dam GM (2010) Intraoperative assessment of microperfusion with visible light spectroscopy for prediction of anastomotic leakage in colorectal anastomoses. Colorectal Dis 12:1018–1025 - DOI
    1. Urbanavicius L, Pattyn P, de Putte DV, Venskutonis D (2011) How to assess intestinal viability during surgery: a review of techniques. World J Gastrointest Surg 3:59–69 - DOI
    1. Karliczek A, Harlaar NJ, Zeebregts CJ, Wiggers T, Baas PC, van Dam GM (2009) Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int J Colorectal Dis 24:569–576 - DOI
    1. Baiocchi GL, Diana M, Boni L (2018) Indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: state of the art and future directions. World J Gastroenterol 24:2921–2930 - DOI

Publication types

LinkOut - more resources