Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jun 1;140(11):3978-81.

IFN-gamma-activated human alveolar macrophages inhibit the intracellular multiplication of Legionella pneumophila

Affiliations
  • PMID: 3131422

IFN-gamma-activated human alveolar macrophages inhibit the intracellular multiplication of Legionella pneumophila

T W Nash et al. J Immunol. .

Abstract

Human alveolar macrophages activated by human rIFN-gamma inhibit the intracellular multiplication of Legionella pneumophila, an intracellular bacterial pathogen and the agent of Legionnaires' disease. Activation of alveolar macrophages with IFN-gamma is dose dependent; significant inhibition of L. pneumophila multiplication (mean 1.60 +/- 0.20 logs) is achieved consistently with concentrations of IFN-gamma of greater than or equal to 2 x 10(-2) micrograms/ml (220 U/ml). Activation of alveolar macrophages is also time dependent. In macrophages treated continuously after explantation, macrophages infected at 48 to 96 h after explantation are more inhibitory than macrophages infected at 24 h after explantation. In macrophages not treated continuously after explantation but treated for various lengths of time before infection, the longer their exposure to IFN-gamma before infection, the greater the inhibition of L. pneumophila multiplication (96 greater than 72 greater than 48 greater than 24 h). IFN-gamma-activated alveolar macrophages exhibit morphologic signs of activation, including increased size, spreading, and aggregation. This paper demonstrates that a human resident macrophage can be activated with IFN-gamma such that it exhibits enhanced antimicrobial activity against a relevant pathogen.

PubMed Disclaimer

Publication types

MeSH terms

Substances