Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

Diving Deeper into Models

In: Fundamentals of Clinical Data Science [Internet]. Cham (CH): Springer; 2019. Chapter 9.
.
Affiliations
Free Books & Documents
Review

Diving Deeper into Models

Alberto Traverso et al.
Free Books & Documents

Excerpt

Pre-requisites to better understand the chapter: knowledge of the major steps and procedures of developing a clinical prediction model.

Logical position of the chapter with respect to the previous chapter: in the last chapters, you have learned how to develop and validate a clinical prediction model. You have been learning logistic regression as main algorithm to build the model. However, several different more complex algorithms can be used to build a clinical prediction model. In this chapter, the main machine learning based algorithms will be presented to you.

Learning objectives: you will be presented with the definitions of: machine learning, supervised and unsupervised learning. The major algorithms for the last two categories will be introduced.

PubMed Disclaimer

References

    1. Michalski RS, Carbonell JG, Mitchell TM. Machine learning: an artificial intelligence approach [Internet]. Berlin/Heidelberg: Springer Berlin Heidelberg; 1983. [cited 2018 Jun 5]. Available from: http://public.eblib.com/choice/publicfullrecord.aspx?p=3099788
    1. Kubat M. An introduction to machine learning [Internet]. Cham: Springer International Publishing; 2017. [cited 2018 June 5]. Available from: http://link.springer.com/10.1007/978-3-319-63913-0 - DOI
    1. Caruana R, Niculescu-Mizil A. An empirical comparison of supervised learning algorithms. In ACM Press; 2006. p. 161–8. [cited 2018 June 5]. Available from: http://portal.acm.org/citation.cfm?doid=1143844.1143865
    1. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning [Internet]. New York: Springer New York; 2009 [cited 2018 Jun 5]. (Springer Series in Statistics). Available from: http://link.springer.com/10.1007/978-0-387-84858-7 - DOI
    1. Zhou X, Belkin M. Semi-supervised learning. In: Academic Press Library in Signal Processing [Internet]. Elsevier; 2014. p. 1239–69. [cited 2018 June 5]. Available from: http://linkinghub.elsevier.com/retrieve/pii/B978012396502800022X

LinkOut - more resources