Human Brown Adipose Tissue Plasticity: Hormonal and Environmental Manipulation
- PMID: 31314462
- Bookshelf ID: NBK543783
- DOI: 10.1007/978-3-319-72790-5_1
Human Brown Adipose Tissue Plasticity: Hormonal and Environmental Manipulation
Excerpt
Brown adipose tissue (BAT), brown-in-white (“brite”) and “beige” adipocytes share the unique ability of converting chemical energy into heat and play a critical role in the adaptive thermogenesis response promoting nonshivering thermogenesis. Uncoupling Protein-1 (UCP1), which allows the uncoupling of substrate oxidation from phosphorylation of ADP, represents the molecular signature of BAT and beige adipocytes. Until recently, the physiologic role of BAT and beige adipocytes depots was thought to be limited to small mammalians and newborns.
The discovery of BAT in adult humans and the demonstration of the presence of inducible BAT activity in white adipose tissue by beige adipocytes have generated enthusiasm as potential targets for treatment of obesity and other disorders due to sustained positive energy balance. These findings are particularly important since in vitro studies have demonstrated that preadipocytes can be directed toward a common brown phenotype by multiple pathways that, in turn, may be exploited for therapeutic interventions. In adult humans, BAT activity is more evident in deep neck fat depots and, to a lesser degree, in subcutaneous adipose tissue, with a transcriptome signature resembling the rodent beige fat. This observation supports the hypothesis that human BAT activity and capacity can be modulated. To this end, we have directed our translational research program toward the characterization of beige fat in humans and on the effects of hormonal and environmental drivers in the adaptive thermogenesis response. Mild cold exposure, within the temperature range commonly employed in climate-controlled buildings, is sufficient to generate a significant increase in non-shivering thermogenesis driven by BAT and beige adipocyte activation. In turn, adaptive thermogenesis generates a specific hormonal signature and promotes glucose disposal. Chronic exposure to mild cold induces expansion of BAT mass and activity, whereas exposure to warm climate abrogates them. Additionally, the metabolic effects of BAT mass expansion are evident only upon stimulation of BAT activity, indicating that both expansion and activation of BAT are necessary and complementary strategies to pursue. From an experimental standpoint, human preadipocytes represent a viable experimental platform to mechanistically interrogate different pathways that are able to expand and activate browning. Our laboratory has focused on studying FGF-21, and FNDC5/irisin in their capacity to promote the browning process. Compared to a white differentiation medium, the addition of either FGF-21 or FNDC5 results in a reprogramming toward a brown phenotype, as indicated by the display of brown transcriptome signature and, functionally, by the increase in oxygen consumption following catecholamine treatment, indicating an increase in substrate utilization. Collectively, the integration of a detailed assessment of human physiology with mechanistic observations in cell culture systems can provide a unique opportunity to translate observations from experimental models to actionable therapeutic targets.
Copyright 2017, The Author(s).
Sections
- Introduction
- BAT and the Adaptive Thermogenesis Response
- Implications of the Rediscovery of BAT in Adult Humans
- Integrative Physiology Studies of Human Adaptive Thermogenesis
- Intervention Studies Aimed to Modulate the Human Adaptive Thermogenesis Response
- Manipulation of the Human Adaptive Thermogenesis Response by Hormones and Myokines
- Conclusions
- References
Similar articles
-
White, brown, beige/brite: different adipose cells for different functions?Endocrinology. 2013 Sep;154(9):2992-3000. doi: 10.1210/en.2013-1403. Epub 2013 Jun 19. Endocrinology. 2013. PMID: 23782940 Review.
-
Overexpression of Adiponectin Receptor 1 Inhibits Brown and Beige Adipose Tissue Activity in Mice.Int J Mol Sci. 2021 Jan 18;22(2):906. doi: 10.3390/ijms22020906. Int J Mol Sci. 2021. PMID: 33477525 Free PMC article.
-
Translational Pharmacology and Physiology of Brown Adipose Tissue in Human Disease and Treatment.Handb Exp Pharmacol. 2019;251:381-424. doi: 10.1007/164_2018_184. Handb Exp Pharmacol. 2019. PMID: 30689089
-
Induction of thermogenesis in brown and beige adipose tissues: molecular markers, mild cold exposure and novel therapies.Curr Opin Endocrinol Diabetes Obes. 2015 Oct;22(5):347-52. doi: 10.1097/MED.0000000000000191. Curr Opin Endocrinol Diabetes Obes. 2015. PMID: 26313896 Review.
-
Brown and Beige Adipose Tissues in Health and Disease.Compr Physiol. 2017 Sep 12;7(4):1281-1306. doi: 10.1002/cphy.c170001. Compr Physiol. 2017. PMID: 28915325 Free PMC article. Review.
References
-
- Agrawal A, Nair N, Baghel NS (2009) A novel approach for reduction of brown fat uptake on FDG PET. Br J Radiol 82:626–631 - PubMed
-
- Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468 - PMC - PubMed
-
- Celi FS, Brychta RJ, Linderman JD, Butler PW, Alberobello AT, Smith S, Courville AB, Lai EW, Costello R, Skarulis MC, Csako G, Remaley A, Pacak K, Chen KY (2010) Minimal changes in environmental temperature result in a significant increase in energy expenditure and changes in the hormonal homeostasis in healthy adults. Eur J Endocrinol 163:863–872 - PMC - PubMed
-
- Celi FS, Le TN, Ni B (2015) Physiology and relevance of human adaptive thermogenesis response. Trends Endocrinol Metab 26:238–247 - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Research Materials