Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Mar 22;27(6):1901-7.
doi: 10.1021/bi00406a016.

Role of fructose in glycation and cross-linking of proteins

Affiliations

Role of fructose in glycation and cross-linking of proteins

J D McPherson et al. Biochemistry. .

Abstract

Incubation of carbohydrate-free human serum albumin (HSA) with fructose in an aqueous buffer at pH 7.4 resulted in glycation of epsilon-amino groups of lysyl residues. A recently developed procedure, involving analysis of hexitol amino acids by high-performance liquid chromatography of phenylthiocarbamyl derivatives, was used to show that 85% of the bound hexose was attached to protein via carbon 2 (C-2). The remainder was attached to protein via carbon 1 (C-1). When incubations were conducted with glucose under identical conditions, all the hexose was attached via C-1. Examination of human ocular lens proteins showed that the majority of the covalently bound hexose was connected to epsilon-amino groups of lysyl residues via C-1; this was attributed mainly to nonenzymatic glucosylation in vivo, which has already been documented. A significant proportion (10-20%) of the bound hexose was connected via C-2. In view of the HSA-hexose incubation results (above), this indicated that the lens proteins had reacted with endogenous fructose; i.e., they had undergone nonenzymatic fructosylation in vivo. The model protein bovine pancreatic ribonuclease A reacted with fructose and glucose at similar rates under physiological conditions. However, covalent, non-disulfide cross-linking, which could be inhibited by D-penicillamine, was induced 10 times more rapidly by fructose than by glucose. It is postulated that some of the protein cross-linking that occurs in vivo is fructose-induced. The possible significance of these processes in diabetic subjects is discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources