Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jul 9;11(7):965.
doi: 10.3390/cancers11070965.

Targeting Cancer Stem Cells in Triple-Negative Breast Cancer

Affiliations
Review

Targeting Cancer Stem Cells in Triple-Negative Breast Cancer

So-Yeon Park et al. Cancers (Basel). .

Abstract

Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer that lacks targeted therapy options, and patients diagnosed with TNBC have poorer outcomes than patients with other breast cancer subtypes. Emerging evidence suggests that breast cancer stem cells (BCSCs), which have tumor-initiating potential and possess self-renewal capacity, may be responsible for this poor outcome by promoting therapy resistance, metastasis, and recurrence. TNBC cells have been consistently reported to display cancer stem cell (CSC) signatures at functional, molecular, and transcriptional levels. In recent decades, CSC-targeting strategies have shown therapeutic effects on TNBC in multiple preclinical studies, and some of these strategies are currently being evaluated in clinical trials. Therefore, understanding CSC biology in TNBC has the potential to guide the discovery of novel therapeutic agents in the future. In this review, we focus on the self-renewal signaling pathways (SRSPs) that are aberrantly activated in TNBC cells and discuss the specific signaling components that are involved in the tumor-initiating potential of TNBC cells. Additionally, we describe the molecular mechanisms shared by both TNBC cells and CSCs, including metabolic plasticity, which enables TNBC cells to switch between metabolic pathways according to substrate availability to meet the energetic and biosynthetic demands for rapid growth and survival under harsh conditions. We highlight CSCs as potential key regulators driving the aggressiveness of TNBC. Thus, the manipulation of CSCs in TNBC can be a targeted therapeutic strategy for TNBC in the future.

Keywords: breast cancer stem cell (BCSC); metabolic plasticity; self-renewal signaling pathways; triple-negative breast cancer (TNBC).

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest to disclose.

Figures

Figure 1
Figure 1
GSEA results showing significant enrichment of stem cell gene sets in (A) TNBC patient tissues and (B) TNBC human cell lines in relation to non-TNBC counterparts. Gene sets are ordered by the normalized enrichment score (NES); the orange line indicates statistical significance (FDR q-value < 0.05).
Figure 2
Figure 2
Schematic representation of TNBC-targeting strategies. The potential therapeutic targets involved in SRSPs and metabolic processes are presented with their specific inhibitors.

References

    1. Liedtke C., Mazouni C., Hess K.R., André F., Tordai A., Mejia J.A., Symmans W.F., Gonzalez-Angulo A.M., Hennessy B., Green M. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 2008;26:1275–1281. doi: 10.1200/JCO.2007.14.4147. - DOI - PubMed
    1. Al-Hajj M., Wicha M.S., Benito-Hernandez A., Morrison S.J., Clarke M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA. 2003;100:3983–3988. doi: 10.1073/pnas.0530291100. - DOI - PMC - PubMed
    1. Ginestier C., Hur M.H., Charafe-Jauffret E., Monville F., Dutcher J., Brown M., Jacquemier J., Viens P., Kleer C.G., Liu S. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–567. doi: 10.1016/j.stem.2007.08.014. - DOI - PMC - PubMed
    1. Li W., Ma H., Zhang J., Zhu L., Wang C., Yang Y. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci. Rep. 2017;7:13856. doi: 10.1038/s41598-017-14364-2. - DOI - PMC - PubMed
    1. Yin H., Glass J. The phenotypic radiation resistance of CD44+/CD24− or low breast cancer cells is mediated through the enhanced activation of ATM signaling. PLoS ONE. 2011;6:e24080. doi: 10.1371/journal.pone.0024080. - DOI - PMC - PubMed

LinkOut - more resources