Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 22;19(1):138.
doi: 10.1186/s12911-019-0843-7.

Development and validation of a pragmatic natural language processing approach to identifying falls in older adults in the emergency department

Affiliations

Development and validation of a pragmatic natural language processing approach to identifying falls in older adults in the emergency department

Brian W Patterson et al. BMC Med Inform Decis Mak. .

Abstract

Background: Falls among older adults are both a common reason for presentation to the emergency department, and a major source of morbidity and mortality. It is critical to identify fall patients quickly and reliably during, and immediately after, emergency department encounters in order to deliver appropriate care and referrals. Unfortunately, falls are difficult to identify without manual chart review, a time intensive process infeasible for many applications including surveillance and quality reporting. Here we describe a pragmatic NLP approach to automating fall identification.

Methods: In this single center retrospective review, 500 emergency department provider notes from older adult patients (age 65 and older) were randomly selected for analysis. A simple, rules-based NLP algorithm for fall identification was developed and evaluated on a development set of 1084 notes, then compared with identification by consensus of trained abstractors blinded to NLP results.

Results: The NLP pipeline demonstrated a recall (sensitivity) of 95.8%, specificity of 97.4%, precision of 92.0%, and F1 score of 0.939 for identifying fall events within emergency physician visit notes, as compared to gold standard manual abstraction by human coders.

Conclusions: Our pragmatic NLP algorithm was able to identify falls in ED notes with excellent precision and recall, comparable to that of more labor-intensive manual abstraction. This finding offers promise not just for improving research methods, but as a potential for identifying patients for targeted interventions, quality measure development and epidemiologic surveillance.

Keywords: Electronic health record; Emergency medicine; Falls; Geriatrics; Natural language processing.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
NLP Algorithm Development, Manual Abstraction, and Evaluation Process
Fig. 2
Fig. 2
Algorithm Schematic

References

    1. Stalenhoef PA, Crebolder HFJJ, Knottnerus JA, Van Der Horst FGEM. Incidence, risk factors and consequences of falls among elderly subjects living in the community: a criteria-based analysis. Eur J Pub Health. 1997;7(3):328–334. doi: 10.1093/eurpub/7.3.328. - DOI
    1. Centers for Disease Control and Prevention. Web-based injury statistics query and reporting system: Centers for Disease Control and Prevention; 2015. Available from: https://www.cdc.gov/injury/wisqars/index.html. Accessed 19 Jan 2019.
    1. Centers for Disease Control and Prevention Fatalities and injuries from falls among older adults--United States, 1993-2003 and 2001-2005. MMWR Morb Mortal Wkly Rep. 2006;55(45):1221–1224. - PubMed
    1. Sterling DA, O'Connor JA, Bonadies J. Geriatric falls: injury severity is high and disproportionate to mechanism. J Trauma. 2001;50(1):116–119. doi: 10.1097/00005373-200101000-00021. - DOI - PubMed
    1. Stevens JA, Corso PS, Finkelstein EA, Miller TR. The costs of fatal and non-fatal falls among older adults. Inj Prev. 2006;12(5):290–295. doi: 10.1136/ip.2005.011015. - DOI - PMC - PubMed

Publication types