Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 17;517(2):227-232.
doi: 10.1016/j.bbrc.2019.07.044. Epub 2019 Jul 20.

Interleukin-6 (IL-6) mediates protection against glucose toxicity in human Müller cells via activation of VEGF-A signaling

Affiliations

Interleukin-6 (IL-6) mediates protection against glucose toxicity in human Müller cells via activation of VEGF-A signaling

Brandon A Coughlin et al. Biochem Biophys Res Commun. .

Abstract

Interleukin-6 (IL-6) has become a target of interest for drug development aiming to treat diabetic retinopathy. Since IL-6 signaling can promote beneficial as well as detrimental effects via two different signaling pathways, the objective of the present study was to investigate the effects of classical IL-6 and IL-6 trans-signaling on human Müller cells (HMC), which are important for the development of diabetic retinopathy. HMCs were cultured in normal (5 mmol/L) and high (25 mmol/L) glucose plus or minus IL-6 or IL-6/sIL-6R. IL-6 receptor expression using immunohistochemistry and flow cytometry and cytokine release using magnetic bead assays were determined. HMCs express the membrane bound form of the IL-6 receptor (mIL-6R), gp130, and can release the soluble forms sIL-6R and sgp130 demonstrating that HMCs are capable of responding to classical IL-6 and IL-6 trans-signaling. IL-6 protected HMCs from glucose toxicity via VEGF-A signaling. IL-6/sIL-6R caused only modest protection, which was not mediated by VEGF-A. Our data show for the first time that classical IL-6 signaling exerts its beneficial effects through VEGF-A action contrary to IL-6 trans-signaling, which was VEGF-A independent. These results have clinical implications for drug development targeting IL-6 since strict anti-IL-6 therapies might further decrease neuroretinal functions in the diabetic retina.

Keywords: Diabetic retinopathy; Interleukin-6; Müller cells; Vascular endothelial cell growth factor.

PubMed Disclaimer

Publication types

LinkOut - more resources