Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jul 7;25(25):3123-3135.
doi: 10.3748/wjg.v25.i25.3123.

Revisiting the liver's role in transplant alloimmunity

Affiliations
Review

Revisiting the liver's role in transplant alloimmunity

Nitin Abrol et al. World J Gastroenterol. .

Abstract

The transplanted liver can modulate the recipient immune system to induce tolerance after transplantation. This phenomenon was observed nearly five decades ago. Subsequently, the liver's role in multivisceral transplantation was recognized, as it has a protective role in preventing rejection of simultaneously transplanted solid organs such as kidney and heart. The liver has a unique architecture and is home to many cells involved in immunity and inflammation. After transplantation, these cells migrate from the liver into the recipient. Early studies identified chimerism as an important mechanism by which the liver modulates the human immune system. Recent studies on human T-cell subtypes, cytokine expression, and gene expression in the allograft have expanded our knowledge on the potential mechanisms underlying immunomodulation. In this article, we discuss the privileged state of liver transplantation compared to other solid organ transplantation, the liver allograft's role in multivisceral transplantation, various cells in the liver involved in immune responses, and the potential mechanisms underlying immunomodulation of host alloresponses.

Keywords: Alloimmunity; Liver transplantation; Liver-kidney transplant; Rejection; Tolerance.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: No conflicts of interest. No financial support.

Figures

Figure 1
Figure 1
Typical course of donor-specific antibodies and flow cytometric cross match after liver transplant in a patient with fully functional liver allograft who is maintained on triple regimen immunosuppression (tacrolimus, mycophenolate, and prednisone). DSA: Donor specific antibodies; FXM: Flow cytometric cross match.
Figure 2
Figure 2
Liver architecture and resident immune cells. A: The liver’s unique architecture and the large number of passenger immune cells that accompany it during transplant likely play a role in its immunologic activity. Class I major histocompatibility (MHC) antigens are strongly expressed on bile ducts (c) and to a lesser extent on sinusoidal and endothelial cells (g). By contrast, Class II MHC antigens are primarily expressed on capillary endothelium, sinusoidal cells and dendritic cells (f). It is also recognized that cell surface MHC antigens are not static and can change in response to host and allograft dynamics such as infection and rejection; B: Liver transplants secrete soluble class I MHC antigens that bind and neutralize systemically circulating antibodies. Kupffer cells (d) also are involved in neutralization of antibodies. As such, liver allografts are thought to function as sinks for circulating immune complexes. EC: Endothelial cell; NK: Natural killer; MHC: Major histocompatibility complex.
Figure 3
Figure 3
Activation of naïve helper T cells is thought to occur through a three signal pathway. Signal 1, antigen recognition by the T cell receptor complex. Antigens are presented by major histocompatibility complex II cells [antigen presenting cells (APC) such dendritic cells]. Signal 2, co-stimulation, the interaction between the APC (CD80 and CD86) and the T cell (CD28). Signal 3, cellular proliferation and T cell differentiation into effector phenotypes (Th1, Th2), through cytokine stimulation. MHC: Major histocompatibility complex; APC: Antigen presenting cells.

Similar articles

Cited by

References

    1. Taner T, Heimbach JK, Rosen CB, Nyberg SL, Park WD, Stegall MD. Decreased chronic cellular and antibody-mediated injury in the kidney following simultaneous liver-kidney transplantation. Kidney Int. 2016;89:909–917. - PubMed
    1. Taner T, Gustafson MP, Hansen MJ, Park WD, Bornschlegl S, Dietz AB, Stegall MD. Donor-specific hypo-responsiveness occurs in simultaneous liver-kidney transplant recipients after the first year. Kidney Int. 2018;93:1465–1474. - PubMed
    1. Taner T, Park WD, Stegall MD. Unique molecular changes in kidney allografts after simultaneous liver-kidney compared with solitary kidney transplantation. Kidney Int. 2017;91:1193–1202. - PubMed
    1. Calne RY, Sells RA, Pena JR, Davis DR, Millard PR, Herbertson BM, Binns RM, Davies DA. Induction of immunological tolerance by porcine liver allografts. Nature. 1969;223:472–476. - PubMed
    1. Qian S, Demetris AJ, Murase N, Rao AS, Fung JJ, Starzl TE. Murine liver allograft transplantation: Tolerance and donor cell chimerism. Hepatology. 1994;19:916–924. - PMC - PubMed

MeSH terms