Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2019 Sep;50(5):484-506.
doi: 10.1111/apt.15403. Epub 2019 Jul 25.

Systematic review with meta-analysis: risk factors for thiopurine-induced leukopenia in IBD

Affiliations
Meta-Analysis

Systematic review with meta-analysis: risk factors for thiopurine-induced leukopenia in IBD

Sara van Gennep et al. Aliment Pharmacol Ther. 2019 Sep.

Abstract

Background: Thiopurine-induced leukopenia, a frequently observed and potentially life-threatening adverse event, complicates the clinical management of IBD patients.

Aim: To assess risk factors for thiopurine-induced leukopenia in IBD.

Methods: MEDLINE, EMBASE, BIOSIS and Cochrane library were searched for studies reporting at least one risk factor for thiopurine-induced leukopenia. Pooled odds ratio (OR) was calculated for each potential risk factor using a random effects model. Studies that were not eligible for meta-analysis were described qualitatively.

Results: Seventy articles were included, 34 (11 229 patients) were included in meta-analyses. A significantly higher thiopurine-induced leukopenia risk was found for TPMT (OR 3.9, 95% [CI] 2.5-6.1) and for NUDT15 R139C (OR 6.9, 95% CI 5.2-9.1), G52A (OR 3.2, 95% CI 1.3-7.9) and 36_37ins/delGGAGTC variant carriers (OR 5.6, 95% CI 2.8-11.4). A potential association between high 6-thioguanine nucleotides (6-TGN) or 6-methylmercaptopurine (6-MMP) levels and leukopenia was observed, since most studies reported higher metabolite levels in leukopenic patients (6-TGN: 204-308 (Lennard method) and 397 (Dervieux method), 6-MMP: 4020-10 450 pmol/8 x 108 RBC) compared to controls (6-TGN: 170-212 (Lennard method) and 269 (Dervieux method), 6-MMP: 1025-4550 pmol/8 x 108 RBC).

Conclusions: TPMT and NUDT15 variants predict thiopurine-induced leukopenia. High 6-TGN and 6-MMP levels might induce leukopenia, although exact cut-off values remain unclear. Potential preventive measures to reduce the risk of thiopurine-induced leukopenia include pre-treatment TPMT and NUDT15 genotyping. Routine thiopurine metabolite measurement might be efficient, yet cut-off levels must be validated in advance.

PubMed Disclaimer

References

REFERENCES

    1. Elion GB. The purine path to chemotherapy. Science. 1989;244:41-47.
    1. Quéméneur L, Gerland LM, Flacher M, Ffrench M, Revillard JP, Genestier L. Differential control of cell cycle, proliferation, and survival of primary T lymphocytes by purine and pyrimidine nucleotides. J Immunol. 2003;170:4986-4995.
    1. Seinen ML, van Nieuw Amerongen GP, de Boer N, van Bodegraven AA. Rac attack: modulation of the small GTPase rac in inflammatory bowel disease and thiopurine therapy. Mol Diagn Ther. 2016;20:551-557.
    1. Poppe D, Tiede I, Fritz G, et al. Azathioprine suppresses ezrin-radixin-moesin-dependent T cell-APC conjugation through inhibition of Vav guanosine exchange activity on Rac proteins. J Immunol. 2006;176:640-651.
    1. Tiede I, Fritz G, Strand S, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 2003;111:1133-1145.

MeSH terms

LinkOut - more resources