Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 25;14(7):e0220300.
doi: 10.1371/journal.pone.0220300. eCollection 2019.

Nicotine absorption during electronic cigarette use among regular users

Affiliations

Nicotine absorption during electronic cigarette use among regular users

Jessica M Yingst et al. PLoS One. .

Abstract

Background: The capability of electronic cigarette devices (e-cigs) to deliver nicotine is key to their potential to replace combustible cigarettes. We compared nicotine delivery and subjective effects associated with the use of two classes of e-cigarettes and cigarettes.

Methods: 14 e-cigarette users were instructed to vape their own e-cigarette device every 20 seconds for 10 minutes while blood was drawn at 1, 2, 4, 6, 8, 10,12, and 15 minutes after initiating vaping. Users rated withdrawal symptoms and side effects before and after vaping. E-cigarette devices were classified as first-generation (same size as cigarette, no activation button) or advanced (larger than cigarette with an activation button). Separately, 10 cigarette smokers completed a similar protocol. Fisher's Exact Test and two-sided t-tests were used as appropriate to determine differences in outcomes between first-generation e-cigarette users, advanced e-cigarette users, and smokers.

Results: Compared to first-generation devices, advanced devices were associated with greater serum nicotine Cmax (ng/ml) (11.5 v. 2.8, p = 0.0231) and greater nicotine boost (ng/ml) (10.8 v. 1.8, p = 0.0177). Overall, e-cigarettes users experienced a significant reduction in withdrawal and craving, although there were no significant differences between users of first-generation and advanced devices. Comparing e-cigarettes overall to cigarettes, cigarettes were associated with greater Cmax (25.9 v. 9.0, p = 0.0043) and greater nicotine boost (21.0 v. 8.2, p = 0.0128).

Conclusions: Advanced e-cigarettes delivered significantly more nicotine than first-generation devices but less than combustible cigarettes. Overall, e-cigarette use was associated with a reduction in withdrawal and craving with no reported side effects. The wide variation in nicotine absorption from different e-cigarette devices should be considered in studies of e-cigarettes for smoking cessation.

PubMed Disclaimer

Conflict of interest statement

I have read the journal's policy and the authors of this manuscript have the following competing interests: JF has done paid consulting for pharmaceutical companies involved in producing smoking cessation medications, including GSK, Pfizer, Novartis, J&J, and Cypress Bioscience. TE is a paid consultant in litigation against the tobacco industry and is named on a patent application for a device that measures the puffing behavior of electronic cigarette users. There are no other competing interests to report for other authors.

Figures

Fig 1
Fig 1. Characteristics of participants’ personal electronic cigarette (e-cigarette) devices and liquids (e-liquid).
Device characteristics and pictures of the devices used by participants during the study. PG/VG = propylene glycol to vegetable glycerin ratio reported by the manufacturer.
Fig 2
Fig 2. Blood serum nicotine levels for e-cigarette users after vaping on their personal e-cigarette at a pre-defined rate of one puff every 20 seconds over a period of 10 minutes.
Blood serum nicotine levels for e-cigarette users after vaping on their personal e-cigarette at a standardized rate of one puff every 20 seconds for 10 minutes. Last puff on e-cigarette was taken at 10 minutes. Black lines represent first-generation devices while gray lines represent advanced devices.
Fig 3
Fig 3. Blood serum nicotine levels after smoking one own brand cigarette ad libitum.
The first 15 minutes of blood serum nicotine levels for cigarette smokers instructed to smoke their own brand of cigarette ad libitum. These data was collected in a separate comparison study (Williams et al., 2010).
Fig 4
Fig 4. Mean blood serum nicotine levels for cigarette and e-cigarette users.
Group average blood serum nicotine levels for cigarette and electronic cigarette users by device type. * denotes significant difference (p < .05) between cigarette and advanced e-cigarette users. ^ denotes significant different (p < .05) between cigarette and first-generation e-cigarette users.

References

    1. National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The Health Consequences of Smoking-50 Years of Progress: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US); 2014. - PubMed
    1. United States Food and Drug Administration (FDA). Family Smoking Prevention and Tobacco Control Act 2009 [Available from: http://www.fda.gov/TobaccoProducts/GuidanceComplianceRegulatoryInformati....
    1. United States Food and Drug Administration (FDA). Healthy Innovation, Safer Families: FDA's 2018 Strategic Policy Roadmap 2018 [Available from: https://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Reports/UCM59....
    1. National Academies of Science. Public Health Consequences of e-cigarettes. Washington DC; 2018. - PubMed
    1. Yingst, Veldheer S, Hrabovsky S, Nichols TT, Wilson SJ, Foulds J. Factors Associated With Electronic Cigarette Users' Device Preferences and Transition From First Generation to Advanced Generation Devices. Nicotine Tob Res. 2015;17(10):1242–6. 10.1093/ntr/ntv052 - DOI - PMC - PubMed

Publication types

MeSH terms