Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 25;7(Suppl 1):44.
doi: 10.1186/s40635-019-0241-6.

The diagnostic accuracy for ARDS of global versus regional lung ultrasound scores - a post hoc analysis of an observational study in invasively ventilated ICU patients

Affiliations

The diagnostic accuracy for ARDS of global versus regional lung ultrasound scores - a post hoc analysis of an observational study in invasively ventilated ICU patients

Luigi Pisani et al. Intensive Care Med Exp. .

Abstract

Background: Semi-quantification of lung aeration by ultrasound helps to assess presence and extent of pulmonary pathologies, including the acute respiratory distress syndrome (ARDS). It is uncertain which lung regions add most to the diagnostic accuracy for ARDS of the frequently used global lung ultrasound (LUS) score. We aimed to compare the diagnostic accuracy of the global versus those of regional LUS scores in invasively ventilated intensive care unit patients.

Methods: This was a post-hoc analysis of a single-center observational study in the mixed medical-surgical intensive care unit of a university-affiliated hospital in the Netherlands. Consecutive patients, aged ≥ 18 years, and are expected to receive invasive ventilation for > 24 h underwent a LUS examination within the first 2 days of ventilation. The Berlin Definition was used to diagnose ARDS, and to classify ARDS severity. From the 12-region LUS examinations, the global score (minimum 0 to maximum 36) and 3 regional scores (the 'anterior,' 'lateral,' and 'posterior' score, minimum 0 to maximum 12) were computed. The area under the receiver operating characteristic (AUROC) curve was calculated and the best cutoff for ARDS discrimination was determined for all scores.

Results: The study enrolled 152 patients; 35 patients had ARDS. The global score was higher in patients with ARDS compared to patients without ARDS (median 19 [15-23] vs. 5 [3-9]; P < 0.001). The posterior score was the main contributor to the global score, and was the only score that increased significantly with ARDS severity. However, the posterior score performed worse than the global score in diagnosing ARDS, and it had a positive predictive value of only 50 (41-59)% when using the optimal cutoff. The combined anterolateral score performed as good as the global score (AUROC of 0.91 [0.85-0.97] vs. 0.91 [0.86-0.95]).

Conclusions: While the posterior score increases with ARDS severity, its diagnostic accuracy for ARDS is hampered due to an unfavorable signal-to-noise ratio. An 8-region 'anterolateral' score performs as well as the global score and may prove useful to exclude ARDS in invasively ventilated ICU patients.

Keywords: ARDS; Diagnosis; Diagnostic accuracy; Intensive care; Lung ultrasound; Ventilation.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow of the patients in this study
Fig. 2
Fig. 2
Anterior, lateral, posterior, and global scores and the receiver operating characteristics curves (ROCs) for the diagnostic accuracy for the acute respiratory distress syndrome of the regional and composite scores. Boxes present interquartile ranges while whiskers show 10 to 90 percentiles. Dots in the ROCs represent the best cutoff, and used to calculate sensitivity, specificity, positive and negative predictive value. LUS lung ultrasound, ROC receiver operating characteristics curve

References

    1. Corradi F, Brusasco C, Pelosi P. Chest ultrasound in acute respiratory distress syndrome. Curr Opin Crit Care. 2014;20:98–103. doi: 10.1097/MCC.0000000000000042. - DOI - PubMed
    1. Sweeney RM, McAuley DF. Acute respiratory distress syndrome. Lancet. 2016;388:2416–2430. doi: 10.1016/S0140-6736(16)00578-X. - DOI - PMC - PubMed
    1. See KC, Ong V, Tan YL, Sahagun J, Taculod J. Chest radiography versus lung ultrasound for identification of acute respiratory distress syndrome: a retrospective observational study. Crit Care. 2018;22:203. doi: 10.1186/s13054-018-2105-y. - DOI - PMC - PubMed
    1. Vukoja M, Riviello E, Gavrilovic S, Adhikari NKJ, Kashyap R, Bhagwanjee S, et al. A survey on critical care resources and practices in low- and middle-income countries. Glob Heart. 2014;9:337–42.e1-5. doi: 10.1016/j.gheart.2014.08.002. - DOI - PubMed
    1. Bass CM, Sajed DR, Adedipe AA, West TE. Pulmonary ultrasound and pulse oximetry versus chest radiography and arterial blood gas analysis for the diagnosis of acute respiratory distress syndrome: a pilot study. Crit Care. 2015;19:282. doi: 10.1186/s13054-015-0995-5. - DOI - PMC - PubMed

LinkOut - more resources