Functional characterization of a novel opioid, PZM21, and its effects on the behavioural responses to morphine
- PMID: 31347704
- PMCID: PMC6932942
- DOI: 10.1111/bph.14805
Functional characterization of a novel opioid, PZM21, and its effects on the behavioural responses to morphine
Abstract
Background and purpose: The concept of opioid ligands biased towards the G protein pathway with minimal recruitment of β-arrestin-2 is a promising approach for the development of novel, efficient, and potentially nonaddictive opioid therapeutics. A recently discovered biased μ-opioid receptor agonist, PZM21, showed analgesic effects with reduced side effects. Here, we aimed to further investigate the behavioural and biochemical properties of PZM21.
Experiment approach: We evaluated antinociceptive effects of systemic and intrathecal PZM21 administration. Its addiction-like properties were determined using several behavioural approaches: conditioned place preference, locomotor sensitization, precipitated withdrawal, and self-administration. Also, effects of PZM21 on morphine-induced antinociception, tolerance, and reward were assessed. Effects of PZM21 on striatal release of monoamines were evaluated using brain microdialysis.
Key results: PZM21 caused long-lasting dose-dependent antinociception. It did not induce reward- and reinforcement-related behaviour; however, its repeated administration led to antinociceptive tolerance and naloxone-precipitated withdrawal symptoms. Pretreatment with PZM21 enhanced morphine-induced antinociception and attenuated the expression of morphine reward. In comparison to morphine, PZM21 administration induced a moderate release of dopamine and a robust release of 5-HT in the striatum.
Conclusions and implications: PZM21 exhibited antinociceptive efficacy, without rewarding or reinforcing properties. However, its clinical application may be restricted, as it induces tolerance and withdrawal symptoms. Notably, its ability to diminish morphine reward implies that PZM21 may be useful in treatment of opioid use disorders.
© 2019 The British Pharmacological Society.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures
References
-
- Alexander, S. P. H. , Christopoulos, A. , Davenport, A. P. , Kelly, E. , Marrion, N. V. , Peters, J. A. , … CGTP collaborators (2017). The concise guide to pharmacology 2017/18: G protein‐coupled receptors. British Journal of Pharmacology, 174(Suppl 1), S17–S129. 10.1111/bph.13878 - DOI - PMC - PubMed
-
- Altarifi, A. A. , David, B. , Muchhala, K. H. , Blough, B. E. , Akbarali, H. , & Negus, S. S. (2017). Effects of acute and repeated treatment with the biased mu opioid receptor agonist TRV130 (oliceridine) on measures of antinociception, gastrointestinal function, and abuse liability in rodents. Journal of Psychopharmacology (Oxford), 31, 730–739. 10.1177/0269881116689257 - DOI - PMC - PubMed
-
- Austin Zamarripa, C. , Edwards, S. R. , Qureshi, H. N. , Yi, J. N. , Blough, B. E. , & Freeman, K. B. (2018). The G‐protein biased mu‐opioid agonist, TRV130, produces reinforcing and antinociceptive effects that are comparable to oxycodone in rats. Drug and Alcohol Dependence, 192, 158–162. 10.1016/j.drugalcdep.2018.08.002 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
