Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layers
- PMID: 31347771
- DOI: 10.1002/cssc.201901505
Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layers
Abstract
Quantum dot solar cells (QDSCs) are attractive technology for commercialization, owing to various advantages, such as cost effectiveness, and require relatively simple device fabrication processes. The properties of semiconductor quantum dots (QDs), such as band gap energy, optical absorption, and carrier transport, can be effectively tuned by modulating their size and shape. Two types of architectures of QDSCs have been developed: 1) photoelectric cells (PECs) fabricated from QDs sensitized on nanostructured TiO2 , and 2) photovoltaic cells fabricated from a Schottky junction and heterojunction. Different types of semiconductor QDs, such as a secondary, ternary, quaternary, and perovskite semiconductors, are used for the advancement of QDSCs. The major challenge in QDSCs is the presence of defects in QDs, which lead to recombination reactions and thereby limit the overall performance of the device. To tackle this problem, several strategies, such as the implementation of a passivation layer over the QD layer and the preparation of core-shell structures, have been developed. This review covers aspects of QDSCs that are essential to understand for further improvement in this field and their commercialization.
Keywords: nanostructures; perovskite phases; photochemistry; quantum dots; solar cells.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
High Efficiency CdS/CdSe Quantum Dot Sensitized Solar Cells with Two ZnSe Layers.ACS Appl Mater Interfaces. 2016 Dec 21;8(50):34482-34489. doi: 10.1021/acsami.6b12842. Epub 2016 Dec 12. ACS Appl Mater Interfaces. 2016. PMID: 27936551
-
Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells.ACS Appl Mater Interfaces. 2016 Feb;8(7):4600-7. doi: 10.1021/acsami.5b10953. Epub 2016 Feb 15. ACS Appl Mater Interfaces. 2016. PMID: 26771519
-
Recombination in quantum dot sensitized solar cells.Acc Chem Res. 2009 Nov 17;42(11):1848-57. doi: 10.1021/ar900134d. Acc Chem Res. 2009. PMID: 19722527
-
Semiconductor quantum dot-sensitized solar cells.Nano Rev. 2013 Oct 31;4. doi: 10.3402/nano.v4i0.22578. Nano Rev. 2013. PMID: 24191178 Free PMC article. Review.
-
Application of Perovskite Quantum Dots as an Absorber in Perovskite Solar Cells.Angew Chem Int Ed Engl. 2022 Feb 21;61(9):e202112412. doi: 10.1002/anie.202112412. Epub 2021 Dec 21. Angew Chem Int Ed Engl. 2022. PMID: 34729885 Review.
Cited by
-
Precise Control of Green to Blue Emission of Halide Perovskite Nanocrystals Using Terbium Chloride as Chlorine Source.Nanomaterials (Basel). 2021 Sep 14;11(9):2390. doi: 10.3390/nano11092390. Nanomaterials (Basel). 2021. PMID: 34578706 Free PMC article.
-
Wide-Bandgap Metal Halide Perovskites for Tandem Solar Cells.ACS Energy Lett. 2020 Dec 23;6(1):232-248. doi: 10.1021/acsenergylett.0c02105. eCollection 2021 Jan 8. ACS Energy Lett. 2020. PMID: 38533481 Free PMC article. Review.
-
How to avoid the perfect storm: The role of energy and photovoltaics.MRS Energy Sustain. 2020;7(1):34. doi: 10.1557/mre.2020.36. Epub 2020 Sep 28. MRS Energy Sustain. 2020. PMID: 38624570 Free PMC article.
-
Advances in Smart Photovoltaic Textiles.ACS Nano. 2024 Feb 6;18(5):3871-3915. doi: 10.1021/acsnano.3c10033. Epub 2024 Jan 23. ACS Nano. 2024. PMID: 38261716 Free PMC article. Review.
-
Solution-processed two-dimensional materials for next-generation photovoltaics.Chem Soc Rev. 2021 Nov 1;50(21):11870-11965. doi: 10.1039/d1cs00106j. Chem Soc Rev. 2021. PMID: 34494631 Free PMC article. Review.
References
-
- Z. Ning, X. Gong, R. Comin, G. Walters, F. Fan, O. Voznyy, E. Yassitepe, A. Buin, S. Hoogland, E. H. Sargent, Nature 2015, 523, 324.
-
- A. Hazarika, Q. Zhao, E. Ashley Gaulding, J. A. Christians, B. Dou, A. R. Marshall, T. Moot, J. J. Berry, J. C. Johnson, J. M. Luther, ACS Nano 2018, 12, 10327-10337.
-
- X. Huang, S. Han, W. Huang, X. Liu, Chem. Soc. Rev. 2013, 42, 173-201.
-
- J. S. Shaikh, N. S. Shaikh, S. S. Mali, J. V. Patil, K. K. Pawar, P. Kanjanaboos, C. K. Hong, J. H. Kim, P. S. Patil, Nanoscale 2018, 10, 4987-5034.
-
- T. J. Jacobsson, J. P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 2016, 9, 1706-1724.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous