Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jul 25;11(8):1052.
doi: 10.3390/cancers11081052.

Omics Approaches in Pancreatic Adenocarcinoma

Affiliations
Review

Omics Approaches in Pancreatic Adenocarcinoma

Iranzu González-Borja et al. Cancers (Basel). .

Abstract

Pancreatic ductal adenocarcinoma, which represents 80% of pancreatic cancers, is mainly diagnosed when treatment with curative intent is not possible. Consequently, the overall five-year survival rate is extremely dismal-around 5% to 7%. In addition, pancreatic cancer is expected to become the second leading cause of cancer-related death by 2030. Therefore, advances in screening, prevention and treatment are urgently needed. Fortunately, a wide range of approaches could help shed light in this area. Beyond the use of cytological or histological samples focusing in diagnosis, a plethora of new approaches are currently being used for a deeper characterization of pancreatic ductal adenocarcinoma, including genetic, epigenetic, and/or proteo-transcriptomic techniques. Accordingly, the development of new analytical technologies using body fluids (blood, bile, urine, etc.) to analyze tumor derived molecules has become a priority in pancreatic ductal adenocarcinoma due to the hard accessibility to tumor samples. These types of technologies will lead us to improve the outcome of pancreatic ductal adenocarcinoma patients.

Keywords: FFPE; body fluids; ctDNA; genomic; lipidomic; metabolomic; pancreatic adenocarcinoma; proteomic; tissue.

PubMed Disclaimer

Conflict of interest statement

E.O.-I. and O.S. have no relevant interests to declare other than their affiliation with Pharmamodelling S.L. The rest of the authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Protein functional interactome network for differentially expressed proteins identified in Pancreatic ductal adenocarcinoma (PDAC) tissue; down-regulated proteins (A) and up-regulated proteins (B). Using STRING software, proteins are represented as nodes, and interactions with continuous lines representing functional association. The closets subsets of proteins share functionalities. In the figure, some functional pathways have been highlighted with color codes representing proteins that belong to the same pathway. Regulated exocytosis (red), mRNA metabolic process (green), ribosomal (purple), neutrophil degranulation (blue) and structural molecule activity (dark green).

References

    1. Rawla P., Sunkara T., Gaduputi V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 2019;10:10–27. doi: 10.14740/wjon1166. - DOI - PMC - PubMed
    1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551. - DOI - PubMed
    1. Ferlay J., Partensky C., Bray F. More deaths from pancreatic cancer than breast cancer in the EU by 2017. Acta Oncol. 2016;55:1158–1160. doi: 10.1080/0284186X.2016.1197419. - DOI - PubMed
    1. Rahib L., Smith B.D., Aizenberg R., Rosenzweig A.B., Fleshman J.M., Matrisian L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–2921. doi: 10.1158/0008-5472.CAN-14-0155. - DOI - PubMed
    1. Chandana S., Babiker H.M., Mahadevan D. Therapeutic trends in pancreatic ductal adenocarcinoma (PDAC) Expert Opin. Investig. Drugs. 2019;28:161–177. doi: 10.1080/13543784.2019.1557145. - DOI - PubMed

LinkOut - more resources