Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 15;10(16):4668-4674.
doi: 10.1021/acs.jpclett.9b01582. Epub 2019 Aug 5.

Capturing the Dynamic Correlation for Arbitrary Spin-Symmetry CASSCF Reference with Adiabatic Connection Approaches: Insights into the Electronic Structure of the Tetramethyleneethane Diradical

Affiliations

Capturing the Dynamic Correlation for Arbitrary Spin-Symmetry CASSCF Reference with Adiabatic Connection Approaches: Insights into the Electronic Structure of the Tetramethyleneethane Diradical

Ewa Pastorczak et al. J Phys Chem Lett. .

Abstract

The recently proposed approach to multireference dynamic correlation energy based on the adiabatic connection (AC) is extended to an arbitrary spin symmetry of the reference state. We show that both the spin-free AC approach and its computationally inexpensive approximation, AC0, when combined with a complete active space wave function, constitute viable alternatives to the perturbation-based and density-functional-based multiconfiguration methods. In particular, the AC0 approach, thanks to its favorable scaling with the system size and the size of the active space, allows for treating larger systems than its perturbation-based counterparts while maintaining comparable accuracy. We show the method's robustness on illustrative chemical systems, including the elusive tetramethyleneethane (TME) diradical, potential energy surfaces of which present a challenge to most computational approaches. For the latter system, AC0 outperforms other methods, staying in close agreement with the full configuration interaction quantum Monte Carlo benchmark. A careful analysis of the contributions to the correlation energy of TME's lowest singlet and triplet states reveals the subtle interplay of the dynamic and static correlation as the key to understanding the shape of the diradical's potential energy surfaces.

PubMed Disclaimer

LinkOut - more resources