Site-Selective Functionalization of (sp3 )C-H Bonds Catalyzed by Artificial Metalloenzymes Containing an Iridium-Porphyrin Cofactor
- PMID: 31356719
- PMCID: PMC6759379
- DOI: 10.1002/anie.201907460
Site-Selective Functionalization of (sp3 )C-H Bonds Catalyzed by Artificial Metalloenzymes Containing an Iridium-Porphyrin Cofactor
Abstract
The selective functionalization of one C-H bond over others in nearly identical steric and electronic environments can facilitate the construction of complex molecules. We report site-selective functionalizations of C-H bonds, differentiated solely by remote substituents, catalyzed by artificial metalloenzymes (ArMs) that are generated from the combination of an evolvable P450 scaffold and an iridium-porphyrin cofactor. The generated systems catalyze the insertion of carbenes into the C-H bonds of a range of phthalan derivatives containing substituents that render the two methylene positions in each phthalan inequivalent. These reactions occur with site-selectivity ratios of up to 17.8:1 and, in most cases, with pairs of enzyme mutants that preferentially form each of the two constitutional isomers. This study demonstrates the potential of abiotic reactions catalyzed by metalloenzymes to functionalize C-H bonds with site selectivity that is difficult to achieve with small-molecule catalysts.
Keywords: C−H functionalization; P450 enzymes; artificial metalloenzymes; biocatalysis; porphyrins.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Figures








Similar articles
-
An artificial metalloenzyme with the kinetics of native enzymes.Science. 2016 Oct 7;354(6308):102-106. doi: 10.1126/science.aah4427. Science. 2016. PMID: 27846500 Free PMC article.
-
Assembly and Evolution of Artificial Metalloenzymes within E. coli Nissle 1917 for Enantioselective and Site-Selective Functionalization of C─H and C═C Bonds.J Am Chem Soc. 2022 Jan 19;144(2):883-890. doi: 10.1021/jacs.1c10975. Epub 2022 Jan 5. J Am Chem Soc. 2022. PMID: 34985270 Free PMC article.
-
Abiological catalysis by artificial haem proteins containing noble metals in place of iron.Nature. 2016 Jun 23;534(7608):534-7. doi: 10.1038/nature17968. Epub 2016 Jun 13. Nature. 2016. PMID: 27296224 Free PMC article.
-
C-H functionalization reactions catalyzed by artificial metalloenzymes.J Inorg Biochem. 2024 Sep;258:112621. doi: 10.1016/j.jinorgbio.2024.112621. Epub 2024 May 31. J Inorg Biochem. 2024. PMID: 38852295 Review.
-
Selective C-H bond functionalization using repurposed or artificial metalloenzymes.Curr Opin Chem Biol. 2017 Apr;37:48-55. doi: 10.1016/j.cbpa.2016.12.027. Epub 2017 Jan 27. Curr Opin Chem Biol. 2017. PMID: 28135654 Free PMC article. Review.
Cited by
-
Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere.Chem Rev. 2022 Jul 27;122(14):11974-12045. doi: 10.1021/acs.chemrev.2c00106. Epub 2022 Jul 11. Chem Rev. 2022. PMID: 35816578 Free PMC article. Review.
-
Enantioselective Single and Dual α-C-H Bond Functionalization of Cyclic Amines via Enzymatic Carbene Transfer.J Am Chem Soc. 2023 Jan 11;145(1):537-550. doi: 10.1021/jacs.2c10775. Epub 2022 Dec 21. J Am Chem Soc. 2023. PMID: 36542059 Free PMC article.
-
Exploring Linear mono-, bis- and tris-Acetylene Containing Agonists of the Human Olfactory Receptor OR1A1.J Med Chem. 2025 Jun 26;68(12):12562-12572. doi: 10.1021/acs.jmedchem.5c00282. Epub 2025 Jun 16. J Med Chem. 2025. PMID: 40523847 Free PMC article.
-
Enabling Broader Adoption of Biocatalysis in Organic Chemistry.JACS Au. 2023 Jul 19;3(8):2073-2085. doi: 10.1021/jacsau.3c00263. eCollection 2023 Aug 28. JACS Au. 2023. PMID: 37654599 Free PMC article. Review.
-
Engineered and Artificial Metalloenzymes for Selective C-H Functionalization.Curr Opin Green Sustain Chem. 2021 Oct;31:100494. doi: 10.1016/j.cogsc.2021.100494. Epub 2021 Apr 8. Curr Opin Green Sustain Chem. 2021. PMID: 34395950 Free PMC article.
References
-
- Yamaguchi J, Yamaguchi AD, Itami K, Angew. Chem. Int. Ed 2012, 51, 8960–9009 - PubMed
- Brückl T, Baxter RD, Ishihara Y, Baran PS, Acc. Chem. Res 2012, 45, 826–839 - PMC - PubMed
- Hartwig JF, J. Am. Chem. Soc 2016, 138, 2–24 - PMC - PubMed
- Das S, Incarvito CD, Crabtree RH, Brudvig GW, Science 2006, 312, 1941. - PubMed
-
- Engle KM, Mei T-S, Wasa M, Yu J-Q, Acc. Chem. Res 2012, 45, 788–802 - PMC - PubMed
- Liao K, Pickel TC, Boyarskikh V, Bacsa J, Musaev DG, Davies HML, Nature 2017, 551, 609–613 - PubMed
- Anding BJ, Dairo TO, Woo LK, Organometallics 2017, 36, 1842–1847
- Che C-M, Lo VK-Y, Zhou C-Y, Huang J-S, Chem. Soc. Rev 2011, 40, 1950–1975 - PubMed
- Metrano AJ, Miller SJ, Acc. Chem. Res 2019, 52, 199–215 - PMC - PubMed
- Liao K, Negretti S, Musaev DG, Bacsa J, Davies HML, Nature 2016, 533, 230. - PubMed
- Liao K, Liu W, Niemeyer ZL, Ren Z, Bacsa J, Musaev DG, Sigman MS, Davies HML, ACS Catal 2018, 8, 678–682.
-
- Narayan ARH, Jiménez-Osés G, Liu P, Negretti S, Zhao W, Gilbert MM, Ramabhadran RO, Yang Y-F, Furan LR, Li Z, Podust LM, Montgomery J, Houk KN, Sherman DH, Nat. Chem 2015, 7, 653–660 - PMC - PubMed
- Negretti S, Narayan ARH, Chiou KC, Kells PM, Stachowski JL, Hansen DA, Podust LM, Montgomery J, Sherman DH, J. Am. Chem. Soc 2014, 136, 4901–4904. - PMC - PubMed
-
- Isin EM, Guengerich FP, Biochim. Biophys. Acta 2007, 1770, 314–329. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources