Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct;144(4):945-961.e9.
doi: 10.1016/j.jaci.2019.07.015. Epub 2019 Jul 26.

Tolerogenic signaling of alveolar macrophages induces lung adaptation to oxidative injury

Affiliations

Tolerogenic signaling of alveolar macrophages induces lung adaptation to oxidative injury

Benoit Allard et al. J Allergy Clin Immunol. 2019 Oct.

Abstract

Background: Inhaled oxidative toxicants present in ambient air cause airway epithelial injury, inflammation, and airway hyperresponsiveness. Effective adaptation to such environmental insults is essential for the preservation of pulmonary function, whereas failure or incomplete adaptation to oxidative injury can render the host susceptible to the development of airway disease.

Objective: We sought to explore the mechanisms of airway adaptation to oxidative injury.

Methods: For a model to study pulmonary adaptation to oxidative stress-induced lung injury, we exposed mice to repeated nose-only chlorine gas exposures. Outcome measures were evaluated 24 hours after the last chlorine exposure. Lung mechanics and airway responsiveness to methacholine were assessed by using the flexiVent. Inflammation and antioxidant responses were assessed in both bronchoalveolar lavage fluid and lung tissue. Using both loss or gain of function and genomic approaches, we further dissected the cellular and molecular mechanisms involved in pulmonary adaptation.

Results: Repeated exposures to oxidative stress resulted in pulmonary adaptation evidenced by abrogation of neutrophilic inflammation and airway hyperresponsiveness. This adaptation was independent of antioxidant mechanisms and regulatory T cells but dependent on residential alveolar macrophages (AMs). Interestingly, 5% of AMs expressed forkhead box P3, and depletion of these cells abolished adaptation. Results from transcriptomic profiling and loss and gain of function suggest that adaptation might be dependent on TGF-β and prostaglandin E2.

Conclusion: Pulmonary adaptation during oxidative stress-induced lung injury is mediated by a novel subset of forkhead box P3-positive AMs that limits inflammation, favoring airway adaptation and host fitness through TGF-β and prostaglandin E2.

Keywords: Lung injury; alveolar macrophages; disease tolerance; forkhead box P3; lung function adaptation; mucosal immunology; oxidative stress.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources