Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan;34(1):68-73.
doi: 10.1089/end.2019.0465. Epub 2019 Aug 28.

The Impact of Ureteral Deformation and External Ureteral Pressure on Stent Failure in Extrinsic Ureteral Obstruction: An In Vitro Experimental Study

Affiliations

The Impact of Ureteral Deformation and External Ureteral Pressure on Stent Failure in Extrinsic Ureteral Obstruction: An In Vitro Experimental Study

Yaniv Shilo et al. J Endourol. 2020 Jan.

Abstract

Background and Purpose: Extrinsic ureteral obstruction is caused frequently by pelvic malignancies or metastatic lymphadenopathy, necessitating renal drainage with ureteral stents to prevent renal failure and kidney damage. Understanding the nature of stent behavior under deformation and realistic external pressures may assist in evaluation of stent performance. Few published studies have investigated the flow and mechanical properties of stents within ureters, and none has considered the effects of deformation and compression on flow in realistic, in vitro, ureter-stent systems. The purpose of this work was to determine whether or not stent failure is due only to stent compression and deformation in the presence of extrinsic obstruction. Methods: We developed an in vitro ureter-stent experimental setup, using latex tubing to simulate a flexible ureter connecting a renal unit and a bladder side. We examined flow behavior in three stents (4.8F, 6F, 7F). The ureter-stent configuration was varied, simulating four levels of deformation (0°, 20°, 40°, 60°) and then simulating different external compressive forces on a stented ureter with 40° deformation. A constant, realistic fluid flow was applied through the ureter-stent configurations, and pressure fluctuations in the renal unit were monitored. Results: Deformation alone on four different levels (0°, 20°, 40°, 60°) has essentially no influence on fluid flow and renal pressure variation. Under increasing external compressive forces of 500, 1000, 2000, and up to 5000 g at 40° deformation, no effect on fluid flow and pressure within the renal unit was noted for the 6F and 7F stents. The only exception was for the 4.8F stent, which demonstrated complete failure at compressive forces near 4000 g. Conclusions: Neither realistic extrinsic ureteral compression forces nor ureteral deformation explain the high frequency of stent failure in extrinsic ureteral obstruction. Other factors such as urine composition may be a major contributor to stent failure.

Keywords: compressive force; malignant ureteral obstruction; ureteral stents.

PubMed Disclaimer

LinkOut - more resources