Fluorescent probes for organelle-targeted bioactive species imaging
- PMID: 31360411
- PMCID: PMC6585876
- DOI: 10.1039/c9sc01652j
Fluorescent probes for organelle-targeted bioactive species imaging
Abstract
Bioactive species, including reactive oxygen species (ROS, including O2˙-, H2O2, HOCl, 1O2, ˙OH, HOBr, etc.), reactive nitrogen species (RNS, including ONOO-, NO, NO2, HNO, etc.), reactive sulfur species (RSS, including GSH, Hcy, Cys, H2S, H2S n , SO2 derivatives, etc.), ATP, HCHO, CO and so on, are a highly important category of molecules in living cells. The dynamic fluctuations of these molecules in subcellular microenvironments determine cellular homeostasis, signal conduction, immunity and metabolism. However, their abnormal expressions can cause disorders which are associated with diverse major diseases. Monitoring bioactive molecules in subcellular structures is therefore critical for bioanalysis and related drug discovery. With the emergence of organelle-targeted fluorescent probes, significant progress has been made in subcellular imaging. Among the developed subcellular localization fluorescent tools, ROS, RNS and RSS (RONSS) probes are highly attractive, owing to their potential for revealing the physiological and pathological functions of these highly reactive, interactive and interconvertible molecules during diverse biological events, which are rather significant for advancing our understanding of different life phenomena and exploring new technologies for life regulation. This review mainly illustrates the design principles, detection mechanisms, current challenges, and potential future directions of organelle-targeted fluorescent probes toward RONSS.
Figures




































Similar articles
-
Fluorescent probes for imaging bioactive species in subcellular organelles.Chem Commun (Camb). 2021 Nov 16;57(91):12058-12073. doi: 10.1039/d1cc04273d. Chem Commun (Camb). 2021. PMID: 34706371 Review.
-
Recent progress and outlooks in rhodamine-based fluorescent probes for detection and imaging of reactive oxygen, nitrogen, and sulfur species.Talanta. 2024 Jul 1;274:126004. doi: 10.1016/j.talanta.2024.126004. Epub 2024 Apr 1. Talanta. 2024. PMID: 38564824 Review.
-
Fluorescent Probes for Biological Species and Microenvironments: from Rational Design to Bioimaging Applications.Acc Chem Res. 2023 Feb 7;56(3):258-269. doi: 10.1021/acs.accounts.2c00643. Epub 2023 Jan 18. Acc Chem Res. 2023. PMID: 36652599
-
Challenges and advances in quantum dot fluorescent probes to detect reactive oxygen and nitrogen species: a review.Anal Chim Acta. 2015 Mar 3;862:1-13. doi: 10.1016/j.aca.2014.08.036. Epub 2014 Aug 23. Anal Chim Acta. 2015. PMID: 25682423 Review.
-
Establishment of a Customizable Fluorescent Probe Platform for the Organelle-Targeted Bioactive Species Detection.ACS Sens. 2020 Jul 24;5(7):2247-2254. doi: 10.1021/acssensors.0c00992. Epub 2020 Jul 14. ACS Sens. 2020. PMID: 32627537
Cited by
-
Synthesis of a new fluorophore: wavelength-tunable bisbenzo[f]isoindolylidenes.Chem Sci. 2023 Nov 2;14(45):13151-13158. doi: 10.1039/d3sc04445a. eCollection 2023 Nov 22. Chem Sci. 2023. PMID: 38023512 Free PMC article.
-
Synthesis of new fluorescent molecules having an aggregation-induced emission property derived from 4-fluoroisoxazoles.Beilstein J Org Chem. 2020 Jun 22;16:1411-1417. doi: 10.3762/bjoc.16.117. eCollection 2020. Beilstein J Org Chem. 2020. PMID: 32647543 Free PMC article.
-
Chimeric Drug Design with a Noncharged Carrier for Mitochondrial Delivery.Pharmaceutics. 2021 Feb 12;13(2):254. doi: 10.3390/pharmaceutics13020254. Pharmaceutics. 2021. PMID: 33673228 Free PMC article.
-
Dual-targeted photothermal agents for enhanced cancer therapy.Chem Sci. 2020 Jul 17;11(31):8055-8072. doi: 10.1039/d0sc03173a. Chem Sci. 2020. PMID: 34123080 Free PMC article. Review.
-
Boronate-Based Probes for Biological Oxidants: A Novel Class of Molecular Tools for Redox Biology.Front Chem. 2020 Sep 25;8:580899. doi: 10.3389/fchem.2020.580899. eCollection 2020. Front Chem. 2020. PMID: 33102447 Free PMC article. Review.
References
-
- Carter K. P., Young A. M., Palmer A. E. Chem. Rev. 2014;114:4564–4601. - PMC - PubMed
- Kim H. M., Cho B. R. Chem. Rev. 2015;115:5014–5055. - PubMed
- Liu J., Cao Z., Lu Y. Chem. Rev. 2009;109:1948–1998. - PMC - PubMed
- Guo Z., Park S., Yoon J., Shin I. Chem. Soc. Rev. 2014;43:16–29. - PubMed
- Lin V. S., Chen W., Xian M., Chang C. J. Chem. Soc. Rev. 2015;44:4596–4618. - PMC - PubMed
- Niu L.-Y., Chen Y.-Z., Zheng H.-R., Wu L.-Z., Tung C.-H., Yang Q.-Z. Chem. Soc. Rev. 2015;44:6143–6160. - PubMed
- Wu D., Sedgwick A. C., Gunnlaugsson T., Akkaya E. U., Yoon J., James T. D. Chem. Soc. Rev. 2017;46:7105–7123. - PubMed
- Heffern M. C., Matosziuk L. M., Meade T. J. Chem. Rev. 2013;114:4496–4539. - PMC - PubMed
-
- Chan J., Dodani S. C., Chang C. J. Nat. Chem. 2012;4:973–984. - PMC - PubMed
- Chyan W., Zhang D. Y., Lippard S. J., Radford R. J. Proc. Natl. Acad. Sci. U. S. A. 2014;111:143–148. - PMC - PubMed
- Liu H. W., Chen L., Xu C., Li Z., Zhang H., Zhang X. B., Tan W. Chem. Soc. Rev. 2018;47:7140–7180. - PubMed
- Qian X., Xu Z. Chem. Soc. Rev. 2015;44:4487–4493. - PubMed
- Sedgwick A. C., Wu L., Han H. H., Bull S. D., He X. P., James T. D., Sessler J. L., Tang B. Z., Tian H., Yoon J. Chem. Soc. Rev. 2018;47:8842–8880. - PubMed
- Tang Y., Lee D., Wang J., Li G., Yu J., Lin W., Yoon J. Chem. Soc. Rev. 2015;44:5003–5015. - PubMed
- Roopa, Kumar N., Bhalla V., Kumar M. Chem. Commun. 2015;51:15614–15628. - PubMed
-
- Xu W., Zeng Z., Jiang J.-H., Chang Y.-T., Yuan L. Angew. Chem., Int. Ed. 2016;55:13658–13699. - PubMed
- Zhu H., Fan J., Du J., Peng X. Acc. Chem. Res. 2016;49:2115–2126. - PubMed
- Jiao X., Li Y., Niu J., Xie X., Wang X., Tang B. Anal. Chem. 2018;90:533–555. - PubMed
- Xu Z., Xu L. Chem. Commun. 2016;52:1094–1119. - PubMed
- Zhang R., Song B., Yuan J. TrAC, Trends Anal. Chem. 2018;99:1–33.
-
- Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B. Chem. Rev. 2017;117:10043–10120. - PMC - PubMed
- Fernandez A., Vendrell M. Chem. Soc. Rev. 2016;45:1182–1196. - PubMed
- Lee M. H., Sharma A., Chang M. J., Lee J., Son S., Sessler J. L., Kang C., Kim J. S. Chem. Soc. Rev. 2018;47:28–52. - PMC - PubMed
- Qiu K., Chen Y., Rees T. W., Ji L., Chao H. Coord. Chem. Rev. 2019;378:66–86.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources